Spaces:
Starting
on
A10G
Starting
on
A10G
from PIL import Image | |
import os | |
import time | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import data | |
from utils import frame_utils | |
from utils.flow_viz import save_vis_flow_tofile | |
from utils.utils import InputPadder, compute_out_of_boundary_mask | |
from glob import glob | |
from gmflow.geometry import forward_backward_consistency_check | |
def create_sintel_submission(model, | |
output_path='sintel_submission', | |
padding_factor=8, | |
save_vis_flow=False, | |
no_save_flo=False, | |
attn_splits_list=None, | |
corr_radius_list=None, | |
prop_radius_list=None, | |
): | |
""" Create submission for the Sintel leaderboard """ | |
model.eval() | |
for dstype in ['clean', 'final']: | |
test_dataset = data.MpiSintel(split='test', aug_params=None, dstype=dstype) | |
flow_prev, sequence_prev = None, None | |
for test_id in range(len(test_dataset)): | |
image1, image2, (sequence, frame) = test_dataset[test_id] | |
if sequence != sequence_prev: | |
flow_prev = None | |
padder = InputPadder(image1.shape, padding_factor=padding_factor) | |
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) | |
results_dict = model(image1, image2, | |
attn_splits_list=attn_splits_list, | |
corr_radius_list=corr_radius_list, | |
prop_radius_list=prop_radius_list, | |
) | |
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W] | |
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() | |
output_dir = os.path.join(output_path, dstype, sequence) | |
output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame + 1)) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
if not no_save_flo: | |
frame_utils.writeFlow(output_file, flow) | |
sequence_prev = sequence | |
# Save vis flow | |
if save_vis_flow: | |
vis_flow_file = output_file.replace('.flo', '.png') | |
save_vis_flow_tofile(flow, vis_flow_file) | |
def create_kitti_submission(model, | |
output_path='kitti_submission', | |
padding_factor=8, | |
save_vis_flow=False, | |
attn_splits_list=None, | |
corr_radius_list=None, | |
prop_radius_list=None, | |
): | |
""" Create submission for the Sintel leaderboard """ | |
model.eval() | |
test_dataset = data.KITTI(split='testing', aug_params=None) | |
if not os.path.exists(output_path): | |
os.makedirs(output_path) | |
for test_id in range(len(test_dataset)): | |
image1, image2, (frame_id,) = test_dataset[test_id] | |
padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor) | |
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) | |
results_dict = model(image1, image2, | |
attn_splits_list=attn_splits_list, | |
corr_radius_list=corr_radius_list, | |
prop_radius_list=prop_radius_list, | |
) | |
flow_pr = results_dict['flow_preds'][-1] | |
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() | |
output_filename = os.path.join(output_path, frame_id) | |
if save_vis_flow: | |
vis_flow_file = output_filename | |
save_vis_flow_tofile(flow, vis_flow_file) | |
else: | |
frame_utils.writeFlowKITTI(output_filename, flow) | |
def validate_chairs(model, | |
with_speed_metric=False, | |
attn_splits_list=False, | |
corr_radius_list=False, | |
prop_radius_list=False, | |
): | |
""" Perform evaluation on the FlyingChairs (test) split """ | |
model.eval() | |
epe_list = [] | |
results = {} | |
if with_speed_metric: | |
s0_10_list = [] | |
s10_40_list = [] | |
s40plus_list = [] | |
val_dataset = data.FlyingChairs(split='validation') | |
print('Number of validation image pairs: %d' % len(val_dataset)) | |
for val_id in range(len(val_dataset)): | |
image1, image2, flow_gt, _ = val_dataset[val_id] | |
image1 = image1[None].cuda() | |
image2 = image2[None].cuda() | |
results_dict = model(image1, image2, | |
attn_splits_list=attn_splits_list, | |
corr_radius_list=corr_radius_list, | |
prop_radius_list=prop_radius_list, | |
) | |
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W] | |
assert flow_pr.size()[-2:] == flow_gt.size()[-2:] | |
epe = torch.sum((flow_pr[0].cpu() - flow_gt) ** 2, dim=0).sqrt() | |
epe_list.append(epe.view(-1).numpy()) | |
if with_speed_metric: | |
flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() | |
valid_mask = (flow_gt_speed < 10) | |
if valid_mask.max() > 0: | |
s0_10_list.append(epe[valid_mask].cpu().numpy()) | |
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) | |
if valid_mask.max() > 0: | |
s10_40_list.append(epe[valid_mask].cpu().numpy()) | |
valid_mask = (flow_gt_speed > 40) | |
if valid_mask.max() > 0: | |
s40plus_list.append(epe[valid_mask].cpu().numpy()) | |
epe_all = np.concatenate(epe_list) | |
epe = np.mean(epe_all) | |
px1 = np.mean(epe_all > 1) | |
px3 = np.mean(epe_all > 3) | |
px5 = np.mean(epe_all > 5) | |
print("Validation Chairs EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (epe, px1, px3, px5)) | |
results['chairs_epe'] = epe | |
results['chairs_1px'] = px1 | |
results['chairs_3px'] = px3 | |
results['chairs_5px'] = px5 | |
if with_speed_metric: | |
s0_10 = np.mean(np.concatenate(s0_10_list)) | |
s10_40 = np.mean(np.concatenate(s10_40_list)) | |
s40plus = np.mean(np.concatenate(s40plus_list)) | |
print("Validation Chairs s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( | |
s0_10, | |
s10_40, | |
s40plus)) | |
results['chairs_s0_10'] = s0_10 | |
results['chairs_s10_40'] = s10_40 | |
results['chairs_s40+'] = s40plus | |
return results | |
def validate_things(model, | |
padding_factor=8, | |
with_speed_metric=False, | |
max_val_flow=400, | |
val_things_clean_only=True, | |
attn_splits_list=False, | |
corr_radius_list=False, | |
prop_radius_list=False, | |
): | |
""" Peform validation using the Things (test) split """ | |
model.eval() | |
results = {} | |
for dstype in ['frames_cleanpass', 'frames_finalpass']: | |
if val_things_clean_only: | |
if dstype == 'frames_finalpass': | |
continue | |
val_dataset = data.FlyingThings3D(dstype=dstype, test_set=True, validate_subset=True, | |
) | |
print('Number of validation image pairs: %d' % len(val_dataset)) | |
epe_list = [] | |
if with_speed_metric: | |
s0_10_list = [] | |
s10_40_list = [] | |
s40plus_list = [] | |
for val_id in range(len(val_dataset)): | |
image1, image2, flow_gt, valid_gt = val_dataset[val_id] | |
image1 = image1[None].cuda() | |
image2 = image2[None].cuda() | |
padder = InputPadder(image1.shape, padding_factor=padding_factor) | |
image1, image2 = padder.pad(image1, image2) | |
results_dict = model(image1, image2, | |
attn_splits_list=attn_splits_list, | |
corr_radius_list=corr_radius_list, | |
prop_radius_list=prop_radius_list, | |
) | |
flow_pr = results_dict['flow_preds'][-1] | |
flow = padder.unpad(flow_pr[0]).cpu() | |
# Evaluation on flow <= max_val_flow | |
flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() | |
valid_gt = valid_gt * (flow_gt_speed < max_val_flow) | |
valid_gt = valid_gt.contiguous() | |
epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt() | |
val = valid_gt >= 0.5 | |
epe_list.append(epe[val].cpu().numpy()) | |
if with_speed_metric: | |
valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) | |
if valid_mask.max() > 0: | |
s0_10_list.append(epe[valid_mask].cpu().numpy()) | |
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5) | |
if valid_mask.max() > 0: | |
s10_40_list.append(epe[valid_mask].cpu().numpy()) | |
valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5) | |
if valid_mask.max() > 0: | |
s40plus_list.append(epe[valid_mask].cpu().numpy()) | |
epe_list = np.mean(np.concatenate(epe_list)) | |
epe = np.mean(epe_list) | |
if dstype == 'frames_cleanpass': | |
dstype = 'things_clean' | |
if dstype == 'frames_finalpass': | |
dstype = 'things_final' | |
print("Validation Things test set (%s) EPE: %.3f" % (dstype, epe)) | |
results[dstype + '_epe'] = epe | |
if with_speed_metric: | |
s0_10 = np.mean(np.concatenate(s0_10_list)) | |
s10_40 = np.mean(np.concatenate(s10_40_list)) | |
s40plus = np.mean(np.concatenate(s40plus_list)) | |
print("Validation Things test (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( | |
dstype, s0_10, | |
s10_40, | |
s40plus)) | |
results[dstype + '_s0_10'] = s0_10 | |
results[dstype + '_s10_40'] = s10_40 | |
results[dstype + '_s40+'] = s40plus | |
return results | |
def validate_sintel(model, | |
count_time=False, | |
padding_factor=8, | |
with_speed_metric=False, | |
evaluate_matched_unmatched=False, | |
attn_splits_list=False, | |
corr_radius_list=False, | |
prop_radius_list=False, | |
): | |
""" Peform validation using the Sintel (train) split """ | |
model.eval() | |
results = {} | |
if count_time: | |
total_time = 0 | |
num_runs = 100 | |
for dstype in ['clean', 'final']: | |
val_dataset = data.MpiSintel(split='training', dstype=dstype, | |
load_occlusion=evaluate_matched_unmatched, | |
) | |
print('Number of validation image pairs: %d' % len(val_dataset)) | |
epe_list = [] | |
if evaluate_matched_unmatched: | |
matched_epe_list = [] | |
unmatched_epe_list = [] | |
if with_speed_metric: | |
s0_10_list = [] | |
s10_40_list = [] | |
s40plus_list = [] | |
for val_id in range(len(val_dataset)): | |
if evaluate_matched_unmatched: | |
image1, image2, flow_gt, valid, noc_valid = val_dataset[val_id] | |
# compuate in-image-plane valid mask | |
in_image_valid = compute_out_of_boundary_mask(flow_gt.unsqueeze(0)).squeeze(0) # [H, W] | |
else: | |
image1, image2, flow_gt, _ = val_dataset[val_id] | |
image1 = image1[None].cuda() | |
image2 = image2[None].cuda() | |
padder = InputPadder(image1.shape, padding_factor=padding_factor) | |
image1, image2 = padder.pad(image1, image2) | |
if count_time and val_id >= 5: # 5 warmup | |
torch.cuda.synchronize() | |
time_start = time.perf_counter() | |
results_dict = model(image1, image2, | |
attn_splits_list=attn_splits_list, | |
corr_radius_list=corr_radius_list, | |
prop_radius_list=prop_radius_list, | |
) | |
# useful when using parallel branches | |
flow_pr = results_dict['flow_preds'][-1] | |
if count_time and val_id >= 5: | |
torch.cuda.synchronize() | |
total_time += time.perf_counter() - time_start | |
if val_id >= num_runs + 4: | |
break | |
flow = padder.unpad(flow_pr[0]).cpu() | |
epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt() | |
epe_list.append(epe.view(-1).numpy()) | |
if evaluate_matched_unmatched: | |
matched_valid_mask = (noc_valid > 0.5) & (in_image_valid > 0.5) | |
if matched_valid_mask.max() > 0: | |
matched_epe_list.append(epe[matched_valid_mask].cpu().numpy()) | |
unmatched_epe_list.append(epe[~matched_valid_mask].cpu().numpy()) | |
if with_speed_metric: | |
flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() | |
valid_mask = (flow_gt_speed < 10) | |
if valid_mask.max() > 0: | |
s0_10_list.append(epe[valid_mask].cpu().numpy()) | |
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) | |
if valid_mask.max() > 0: | |
s10_40_list.append(epe[valid_mask].cpu().numpy()) | |
valid_mask = (flow_gt_speed > 40) | |
if valid_mask.max() > 0: | |
s40plus_list.append(epe[valid_mask].cpu().numpy()) | |
epe_all = np.concatenate(epe_list) | |
epe = np.mean(epe_all) | |
px1 = np.mean(epe_all > 1) | |
px3 = np.mean(epe_all > 3) | |
px5 = np.mean(epe_all > 5) | |
dstype_ori = dstype | |
print("Validation Sintel (%s) EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (dstype_ori, epe, px1, px3, px5)) | |
dstype = 'sintel_' + dstype | |
results[dstype + '_epe'] = np.mean(epe_list) | |
results[dstype + '_1px'] = px1 | |
results[dstype + '_3px'] = px3 | |
results[dstype + '_5px'] = px5 | |
if with_speed_metric: | |
s0_10 = np.mean(np.concatenate(s0_10_list)) | |
s10_40 = np.mean(np.concatenate(s10_40_list)) | |
s40plus = np.mean(np.concatenate(s40plus_list)) | |
print("Validation Sintel (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( | |
dstype_ori, s0_10, | |
s10_40, | |
s40plus)) | |
results[dstype + '_s0_10'] = s0_10 | |
results[dstype + '_s10_40'] = s10_40 | |
results[dstype + '_s40+'] = s40plus | |
if count_time: | |
print('Time: %.6fs' % (total_time / num_runs)) | |
break # only the clean pass when counting time | |
if evaluate_matched_unmatched: | |
matched_epe = np.mean(np.concatenate(matched_epe_list)) | |
unmatched_epe = np.mean(np.concatenate(unmatched_epe_list)) | |
print('Validatation Sintel (%s) matched epe: %.3f, unmatched epe: %.3f' % ( | |
dstype_ori, matched_epe, unmatched_epe)) | |
results[dstype + '_matched'] = matched_epe | |
results[dstype + '_unmatched'] = unmatched_epe | |
return results | |
def validate_kitti(model, | |
padding_factor=8, | |
with_speed_metric=False, | |
average_over_pixels=True, | |
attn_splits_list=False, | |
corr_radius_list=False, | |
prop_radius_list=False, | |
): | |
""" Peform validation using the KITTI-2015 (train) split """ | |
model.eval() | |
val_dataset = data.KITTI(split='training') | |
print('Number of validation image pairs: %d' % len(val_dataset)) | |
out_list, epe_list = [], [] | |
results = {} | |
if with_speed_metric: | |
if average_over_pixels: | |
s0_10_list = [] | |
s10_40_list = [] | |
s40plus_list = [] | |
else: | |
s0_10_epe_sum = 0 | |
s0_10_valid_samples = 0 | |
s10_40_epe_sum = 0 | |
s10_40_valid_samples = 0 | |
s40plus_epe_sum = 0 | |
s40plus_valid_samples = 0 | |
for val_id in range(len(val_dataset)): | |
image1, image2, flow_gt, valid_gt = val_dataset[val_id] | |
image1 = image1[None].cuda() | |
image2 = image2[None].cuda() | |
padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor) | |
image1, image2 = padder.pad(image1, image2) | |
results_dict = model(image1, image2, | |
attn_splits_list=attn_splits_list, | |
corr_radius_list=corr_radius_list, | |
prop_radius_list=prop_radius_list, | |
) | |
# useful when using parallel branches | |
flow_pr = results_dict['flow_preds'][-1] | |
flow = padder.unpad(flow_pr[0]).cpu() | |
epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt() | |
mag = torch.sum(flow_gt ** 2, dim=0).sqrt() | |
if with_speed_metric: | |
# flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() | |
flow_gt_speed = mag | |
if average_over_pixels: | |
valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) # note KITTI GT is sparse | |
if valid_mask.max() > 0: | |
s0_10_list.append(epe[valid_mask].cpu().numpy()) | |
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5) | |
if valid_mask.max() > 0: | |
s10_40_list.append(epe[valid_mask].cpu().numpy()) | |
valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5) | |
if valid_mask.max() > 0: | |
s40plus_list.append(epe[valid_mask].cpu().numpy()) | |
else: | |
valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) # note KITTI GT is sparse | |
if valid_mask.max() > 0: | |
s0_10_epe_sum += (epe * valid_mask).sum() / valid_mask.sum() | |
s0_10_valid_samples += 1 | |
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5) | |
if valid_mask.max() > 0: | |
s10_40_epe_sum += (epe * valid_mask).sum() / valid_mask.sum() | |
s10_40_valid_samples += 1 | |
valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5) | |
if valid_mask.max() > 0: | |
s40plus_epe_sum += (epe * valid_mask).sum() / valid_mask.sum() | |
s40plus_valid_samples += 1 | |
epe = epe.view(-1) | |
mag = mag.view(-1) | |
val = valid_gt.view(-1) >= 0.5 | |
out = ((epe > 3.0) & ((epe / mag) > 0.05)).float() | |
if average_over_pixels: | |
epe_list.append(epe[val].cpu().numpy()) | |
else: | |
epe_list.append(epe[val].mean().item()) | |
out_list.append(out[val].cpu().numpy()) | |
if average_over_pixels: | |
epe_list = np.concatenate(epe_list) | |
else: | |
epe_list = np.array(epe_list) | |
out_list = np.concatenate(out_list) | |
epe = np.mean(epe_list) | |
f1 = 100 * np.mean(out_list) | |
print("Validation KITTI EPE: %.3f, F1-all: %.3f" % (epe, f1)) | |
results['kitti_epe'] = epe | |
results['kitti_f1'] = f1 | |
if with_speed_metric: | |
if average_over_pixels: | |
s0_10 = np.mean(np.concatenate(s0_10_list)) | |
s10_40 = np.mean(np.concatenate(s10_40_list)) | |
s40plus = np.mean(np.concatenate(s40plus_list)) | |
else: | |
s0_10 = s0_10_epe_sum / s0_10_valid_samples | |
s10_40 = s10_40_epe_sum / s10_40_valid_samples | |
s40plus = s40plus_epe_sum / s40plus_valid_samples | |
print("Validation KITTI s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( | |
s0_10, | |
s10_40, | |
s40plus)) | |
results['kitti_s0_10'] = s0_10 | |
results['kitti_s10_40'] = s10_40 | |
results['kitti_s40+'] = s40plus | |
return results | |
def inference_on_dir(model, | |
inference_dir, | |
output_path='output', | |
padding_factor=8, | |
inference_size=None, | |
paired_data=False, # dir of paired testdata instead of a sequence | |
save_flo_flow=False, # save as .flo for quantative evaluation | |
attn_splits_list=None, | |
corr_radius_list=None, | |
prop_radius_list=None, | |
pred_bidir_flow=False, | |
fwd_bwd_consistency_check=False, | |
): | |
""" Inference on a directory """ | |
model.eval() | |
if fwd_bwd_consistency_check: | |
assert pred_bidir_flow | |
if not os.path.exists(output_path): | |
os.makedirs(output_path) | |
filenames = sorted(glob(inference_dir + '/*')) | |
print('%d images found' % len(filenames)) | |
stride = 2 if paired_data else 1 | |
if paired_data: | |
assert len(filenames) % 2 == 0 | |
for test_id in range(0, len(filenames) - 1, stride): | |
image1 = frame_utils.read_gen(filenames[test_id]) | |
image2 = frame_utils.read_gen(filenames[test_id + 1]) | |
image1 = np.array(image1).astype(np.uint8) | |
image2 = np.array(image2).astype(np.uint8) | |
if len(image1.shape) == 2: # gray image, for example, HD1K | |
image1 = np.tile(image1[..., None], (1, 1, 3)) | |
image2 = np.tile(image2[..., None], (1, 1, 3)) | |
else: | |
image1 = image1[..., :3] | |
image2 = image2[..., :3] | |
image1 = torch.from_numpy(image1).permute(2, 0, 1).float() | |
image2 = torch.from_numpy(image2).permute(2, 0, 1).float() | |
if inference_size is None: | |
padder = InputPadder(image1.shape, padding_factor=padding_factor) | |
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) | |
else: | |
image1, image2 = image1[None].cuda(), image2[None].cuda() | |
# resize before inference | |
if inference_size is not None: | |
assert isinstance(inference_size, list) or isinstance(inference_size, tuple) | |
ori_size = image1.shape[-2:] | |
image1 = F.interpolate(image1, size=inference_size, mode='bilinear', | |
align_corners=True) | |
image2 = F.interpolate(image2, size=inference_size, mode='bilinear', | |
align_corners=True) | |
results_dict = model(image1, image2, | |
attn_splits_list=attn_splits_list, | |
corr_radius_list=corr_radius_list, | |
prop_radius_list=prop_radius_list, | |
pred_bidir_flow=pred_bidir_flow, | |
) | |
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W] | |
# resize back | |
if inference_size is not None: | |
flow_pr = F.interpolate(flow_pr, size=ori_size, mode='bilinear', | |
align_corners=True) | |
flow_pr[:, 0] = flow_pr[:, 0] * ori_size[-1] / inference_size[-1] | |
flow_pr[:, 1] = flow_pr[:, 1] * ori_size[-2] / inference_size[-2] | |
if inference_size is None: | |
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() # [H, W, 2] | |
else: | |
flow = flow_pr[0].permute(1, 2, 0).cpu().numpy() # [H, W, 2] | |
output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow.png') | |
# save vis flow | |
save_vis_flow_tofile(flow, output_file) | |
# also predict backward flow | |
if pred_bidir_flow: | |
assert flow_pr.size(0) == 2 # [2, H, W, 2] | |
if inference_size is None: | |
flow_bwd = padder.unpad(flow_pr[1]).permute(1, 2, 0).cpu().numpy() # [H, W, 2] | |
else: | |
flow_bwd = flow_pr[1].permute(1, 2, 0).cpu().numpy() # [H, W, 2] | |
output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow_bwd.png') | |
# save vis flow | |
save_vis_flow_tofile(flow_bwd, output_file) | |
# forward-backward consistency check | |
# occlusion is 1 | |
if fwd_bwd_consistency_check: | |
if inference_size is None: | |
fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W] | |
bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W] | |
else: | |
fwd_flow = flow_pr[0].unsqueeze(0) | |
bwd_flow = flow_pr[1].unsqueeze(0) | |
fwd_occ, bwd_occ = forward_backward_consistency_check(fwd_flow, bwd_flow) # [1, H, W] float | |
fwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ.png') | |
bwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ_bwd.png') | |
Image.fromarray((fwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(fwd_occ_file) | |
Image.fromarray((bwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(bwd_occ_file) | |
if save_flo_flow: | |
output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_pred.flo') | |
frame_utils.writeFlow(output_file, flow) | |