Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from .registry import ACTIVATION_LAYERS | |
class HSigmoid(nn.Module): | |
"""Hard Sigmoid Module. Apply the hard sigmoid function: | |
Hsigmoid(x) = min(max((x + bias) / divisor, min_value), max_value) | |
Default: Hsigmoid(x) = min(max((x + 1) / 2, 0), 1) | |
Args: | |
bias (float): Bias of the input feature map. Default: 1.0. | |
divisor (float): Divisor of the input feature map. Default: 2.0. | |
min_value (float): Lower bound value. Default: 0.0. | |
max_value (float): Upper bound value. Default: 1.0. | |
Returns: | |
Tensor: The output tensor. | |
""" | |
def __init__(self, bias=1.0, divisor=2.0, min_value=0.0, max_value=1.0): | |
super(HSigmoid, self).__init__() | |
self.bias = bias | |
self.divisor = divisor | |
assert self.divisor != 0 | |
self.min_value = min_value | |
self.max_value = max_value | |
def forward(self, x): | |
x = (x + self.bias) / self.divisor | |
return x.clamp_(self.min_value, self.max_value) | |