Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from .registry import PADDING_LAYERS | |
PADDING_LAYERS.register_module('zero', module=nn.ZeroPad2d) | |
PADDING_LAYERS.register_module('reflect', module=nn.ReflectionPad2d) | |
PADDING_LAYERS.register_module('replicate', module=nn.ReplicationPad2d) | |
def build_padding_layer(cfg, *args, **kwargs): | |
"""Build padding layer. | |
Args: | |
cfg (None or dict): The padding layer config, which should contain: | |
- type (str): Layer type. | |
- layer args: Args needed to instantiate a padding layer. | |
Returns: | |
nn.Module: Created padding layer. | |
""" | |
if not isinstance(cfg, dict): | |
raise TypeError('cfg must be a dict') | |
if 'type' not in cfg: | |
raise KeyError('the cfg dict must contain the key "type"') | |
cfg_ = cfg.copy() | |
padding_type = cfg_.pop('type') | |
if padding_type not in PADDING_LAYERS: | |
raise KeyError(f'Unrecognized padding type {padding_type}.') | |
else: | |
padding_layer = PADDING_LAYERS.get(padding_type) | |
layer = padding_layer(*args, **kwargs, **cfg_) | |
return layer | |