Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from annotator.uniformer.mmcv.cnn import PLUGIN_LAYERS, Scale | |
def NEG_INF_DIAG(n, device): | |
"""Returns a diagonal matrix of size [n, n]. | |
The diagonal are all "-inf". This is for avoiding calculating the | |
overlapped element in the Criss-Cross twice. | |
""" | |
return torch.diag(torch.tensor(float('-inf')).to(device).repeat(n), 0) | |
class CrissCrossAttention(nn.Module): | |
"""Criss-Cross Attention Module. | |
.. note:: | |
Before v1.3.13, we use a CUDA op. Since v1.3.13, we switch | |
to a pure PyTorch and equivalent implementation. For more | |
details, please refer to https://github.com/open-mmlab/mmcv/pull/1201. | |
Speed comparison for one forward pass | |
- Input size: [2,512,97,97] | |
- Device: 1 NVIDIA GeForce RTX 2080 Ti | |
+-----------------------+---------------+------------+---------------+ | |
| |PyTorch version|CUDA version|Relative speed | | |
+=======================+===============+============+===============+ | |
|with torch.no_grad() |0.00554402 s |0.0299619 s |5.4x | | |
+-----------------------+---------------+------------+---------------+ | |
|no with torch.no_grad()|0.00562803 s |0.0301349 s |5.4x | | |
+-----------------------+---------------+------------+---------------+ | |
Args: | |
in_channels (int): Channels of the input feature map. | |
""" | |
def __init__(self, in_channels): | |
super().__init__() | |
self.query_conv = nn.Conv2d(in_channels, in_channels // 8, 1) | |
self.key_conv = nn.Conv2d(in_channels, in_channels // 8, 1) | |
self.value_conv = nn.Conv2d(in_channels, in_channels, 1) | |
self.gamma = Scale(0.) | |
self.in_channels = in_channels | |
def forward(self, x): | |
"""forward function of Criss-Cross Attention. | |
Args: | |
x (Tensor): Input feature. \ | |
shape (batch_size, in_channels, height, width) | |
Returns: | |
Tensor: Output of the layer, with shape of \ | |
(batch_size, in_channels, height, width) | |
""" | |
B, C, H, W = x.size() | |
query = self.query_conv(x) | |
key = self.key_conv(x) | |
value = self.value_conv(x) | |
energy_H = torch.einsum('bchw,bciw->bwhi', query, key) + NEG_INF_DIAG( | |
H, query.device) | |
energy_H = energy_H.transpose(1, 2) | |
energy_W = torch.einsum('bchw,bchj->bhwj', query, key) | |
attn = F.softmax( | |
torch.cat([energy_H, energy_W], dim=-1), dim=-1) # [B,H,W,(H+W)] | |
out = torch.einsum('bciw,bhwi->bchw', value, attn[..., :H]) | |
out += torch.einsum('bchj,bhwj->bchw', value, attn[..., H:]) | |
out = self.gamma(out) + x | |
out = out.contiguous() | |
return out | |
def __repr__(self): | |
s = self.__class__.__name__ | |
s += f'(in_channels={self.in_channels})' | |
return s | |