Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Tuple | |
import torch | |
from torch import nn as nn | |
from torch.autograd import Function | |
from ..utils import ext_loader | |
from .ball_query import ball_query | |
from .knn import knn | |
ext_module = ext_loader.load_ext( | |
'_ext', ['group_points_forward', 'group_points_backward']) | |
class QueryAndGroup(nn.Module): | |
"""Groups points with a ball query of radius. | |
Args: | |
max_radius (float): The maximum radius of the balls. | |
If None is given, we will use kNN sampling instead of ball query. | |
sample_num (int): Maximum number of features to gather in the ball. | |
min_radius (float, optional): The minimum radius of the balls. | |
Default: 0. | |
use_xyz (bool, optional): Whether to use xyz. | |
Default: True. | |
return_grouped_xyz (bool, optional): Whether to return grouped xyz. | |
Default: False. | |
normalize_xyz (bool, optional): Whether to normalize xyz. | |
Default: False. | |
uniform_sample (bool, optional): Whether to sample uniformly. | |
Default: False | |
return_unique_cnt (bool, optional): Whether to return the count of | |
unique samples. Default: False. | |
return_grouped_idx (bool, optional): Whether to return grouped idx. | |
Default: False. | |
""" | |
def __init__(self, | |
max_radius, | |
sample_num, | |
min_radius=0, | |
use_xyz=True, | |
return_grouped_xyz=False, | |
normalize_xyz=False, | |
uniform_sample=False, | |
return_unique_cnt=False, | |
return_grouped_idx=False): | |
super().__init__() | |
self.max_radius = max_radius | |
self.min_radius = min_radius | |
self.sample_num = sample_num | |
self.use_xyz = use_xyz | |
self.return_grouped_xyz = return_grouped_xyz | |
self.normalize_xyz = normalize_xyz | |
self.uniform_sample = uniform_sample | |
self.return_unique_cnt = return_unique_cnt | |
self.return_grouped_idx = return_grouped_idx | |
if self.return_unique_cnt: | |
assert self.uniform_sample, \ | |
'uniform_sample should be True when ' \ | |
'returning the count of unique samples' | |
if self.max_radius is None: | |
assert not self.normalize_xyz, \ | |
'can not normalize grouped xyz when max_radius is None' | |
def forward(self, points_xyz, center_xyz, features=None): | |
""" | |
Args: | |
points_xyz (Tensor): (B, N, 3) xyz coordinates of the features. | |
center_xyz (Tensor): (B, npoint, 3) coordinates of the centriods. | |
features (Tensor): (B, C, N) Descriptors of the features. | |
Returns: | |
Tensor: (B, 3 + C, npoint, sample_num) Grouped feature. | |
""" | |
# if self.max_radius is None, we will perform kNN instead of ball query | |
# idx is of shape [B, npoint, sample_num] | |
if self.max_radius is None: | |
idx = knn(self.sample_num, points_xyz, center_xyz, False) | |
idx = idx.transpose(1, 2).contiguous() | |
else: | |
idx = ball_query(self.min_radius, self.max_radius, self.sample_num, | |
points_xyz, center_xyz) | |
if self.uniform_sample: | |
unique_cnt = torch.zeros((idx.shape[0], idx.shape[1])) | |
for i_batch in range(idx.shape[0]): | |
for i_region in range(idx.shape[1]): | |
unique_ind = torch.unique(idx[i_batch, i_region, :]) | |
num_unique = unique_ind.shape[0] | |
unique_cnt[i_batch, i_region] = num_unique | |
sample_ind = torch.randint( | |
0, | |
num_unique, (self.sample_num - num_unique, ), | |
dtype=torch.long) | |
all_ind = torch.cat((unique_ind, unique_ind[sample_ind])) | |
idx[i_batch, i_region, :] = all_ind | |
xyz_trans = points_xyz.transpose(1, 2).contiguous() | |
# (B, 3, npoint, sample_num) | |
grouped_xyz = grouping_operation(xyz_trans, idx) | |
grouped_xyz_diff = grouped_xyz - \ | |
center_xyz.transpose(1, 2).unsqueeze(-1) # relative offsets | |
if self.normalize_xyz: | |
grouped_xyz_diff /= self.max_radius | |
if features is not None: | |
grouped_features = grouping_operation(features, idx) | |
if self.use_xyz: | |
# (B, C + 3, npoint, sample_num) | |
new_features = torch.cat([grouped_xyz_diff, grouped_features], | |
dim=1) | |
else: | |
new_features = grouped_features | |
else: | |
assert (self.use_xyz | |
), 'Cannot have not features and not use xyz as a feature!' | |
new_features = grouped_xyz_diff | |
ret = [new_features] | |
if self.return_grouped_xyz: | |
ret.append(grouped_xyz) | |
if self.return_unique_cnt: | |
ret.append(unique_cnt) | |
if self.return_grouped_idx: | |
ret.append(idx) | |
if len(ret) == 1: | |
return ret[0] | |
else: | |
return tuple(ret) | |
class GroupAll(nn.Module): | |
"""Group xyz with feature. | |
Args: | |
use_xyz (bool): Whether to use xyz. | |
""" | |
def __init__(self, use_xyz: bool = True): | |
super().__init__() | |
self.use_xyz = use_xyz | |
def forward(self, | |
xyz: torch.Tensor, | |
new_xyz: torch.Tensor, | |
features: torch.Tensor = None): | |
""" | |
Args: | |
xyz (Tensor): (B, N, 3) xyz coordinates of the features. | |
new_xyz (Tensor): new xyz coordinates of the features. | |
features (Tensor): (B, C, N) features to group. | |
Returns: | |
Tensor: (B, C + 3, 1, N) Grouped feature. | |
""" | |
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2) | |
if features is not None: | |
grouped_features = features.unsqueeze(2) | |
if self.use_xyz: | |
# (B, 3 + C, 1, N) | |
new_features = torch.cat([grouped_xyz, grouped_features], | |
dim=1) | |
else: | |
new_features = grouped_features | |
else: | |
new_features = grouped_xyz | |
return new_features | |
class GroupingOperation(Function): | |
"""Group feature with given index.""" | |
def forward(ctx, features: torch.Tensor, | |
indices: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
features (Tensor): (B, C, N) tensor of features to group. | |
indices (Tensor): (B, npoint, nsample) the indices of | |
features to group with. | |
Returns: | |
Tensor: (B, C, npoint, nsample) Grouped features. | |
""" | |
features = features.contiguous() | |
indices = indices.contiguous() | |
B, nfeatures, nsample = indices.size() | |
_, C, N = features.size() | |
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample) | |
ext_module.group_points_forward(B, C, N, nfeatures, nsample, features, | |
indices, output) | |
ctx.for_backwards = (indices, N) | |
return output | |
def backward(ctx, | |
grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Args: | |
grad_out (Tensor): (B, C, npoint, nsample) tensor of the gradients | |
of the output from forward. | |
Returns: | |
Tensor: (B, C, N) gradient of the features. | |
""" | |
idx, N = ctx.for_backwards | |
B, C, npoint, nsample = grad_out.size() | |
grad_features = torch.cuda.FloatTensor(B, C, N).zero_() | |
grad_out_data = grad_out.data.contiguous() | |
ext_module.group_points_backward(B, C, N, npoint, nsample, | |
grad_out_data, idx, | |
grad_features.data) | |
return grad_features, None | |
grouping_operation = GroupingOperation.apply | |