Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import torch | |
from annotator.uniformer.mmcv.utils import deprecated_api_warning | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext( | |
'_ext', ['nms', 'softnms', 'nms_match', 'nms_rotated']) | |
# This function is modified from: https://github.com/pytorch/vision/ | |
class NMSop(torch.autograd.Function): | |
def forward(ctx, bboxes, scores, iou_threshold, offset, score_threshold, | |
max_num): | |
is_filtering_by_score = score_threshold > 0 | |
if is_filtering_by_score: | |
valid_mask = scores > score_threshold | |
bboxes, scores = bboxes[valid_mask], scores[valid_mask] | |
valid_inds = torch.nonzero( | |
valid_mask, as_tuple=False).squeeze(dim=1) | |
inds = ext_module.nms( | |
bboxes, scores, iou_threshold=float(iou_threshold), offset=offset) | |
if max_num > 0: | |
inds = inds[:max_num] | |
if is_filtering_by_score: | |
inds = valid_inds[inds] | |
return inds | |
def symbolic(g, bboxes, scores, iou_threshold, offset, score_threshold, | |
max_num): | |
from ..onnx import is_custom_op_loaded | |
has_custom_op = is_custom_op_loaded() | |
# TensorRT nms plugin is aligned with original nms in ONNXRuntime | |
is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT' | |
if has_custom_op and (not is_trt_backend): | |
return g.op( | |
'mmcv::NonMaxSuppression', | |
bboxes, | |
scores, | |
iou_threshold_f=float(iou_threshold), | |
offset_i=int(offset)) | |
else: | |
from torch.onnx.symbolic_opset9 import select, squeeze, unsqueeze | |
from ..onnx.onnx_utils.symbolic_helper import _size_helper | |
boxes = unsqueeze(g, bboxes, 0) | |
scores = unsqueeze(g, unsqueeze(g, scores, 0), 0) | |
if max_num > 0: | |
max_num = g.op( | |
'Constant', | |
value_t=torch.tensor(max_num, dtype=torch.long)) | |
else: | |
dim = g.op('Constant', value_t=torch.tensor(0)) | |
max_num = _size_helper(g, bboxes, dim) | |
max_output_per_class = max_num | |
iou_threshold = g.op( | |
'Constant', | |
value_t=torch.tensor([iou_threshold], dtype=torch.float)) | |
score_threshold = g.op( | |
'Constant', | |
value_t=torch.tensor([score_threshold], dtype=torch.float)) | |
nms_out = g.op('NonMaxSuppression', boxes, scores, | |
max_output_per_class, iou_threshold, | |
score_threshold) | |
return squeeze( | |
g, | |
select( | |
g, nms_out, 1, | |
g.op( | |
'Constant', | |
value_t=torch.tensor([2], dtype=torch.long))), 1) | |
class SoftNMSop(torch.autograd.Function): | |
def forward(ctx, boxes, scores, iou_threshold, sigma, min_score, method, | |
offset): | |
dets = boxes.new_empty((boxes.size(0), 5), device='cpu') | |
inds = ext_module.softnms( | |
boxes.cpu(), | |
scores.cpu(), | |
dets.cpu(), | |
iou_threshold=float(iou_threshold), | |
sigma=float(sigma), | |
min_score=float(min_score), | |
method=int(method), | |
offset=int(offset)) | |
return dets, inds | |
def symbolic(g, boxes, scores, iou_threshold, sigma, min_score, method, | |
offset): | |
from packaging import version | |
assert version.parse(torch.__version__) >= version.parse('1.7.0') | |
nms_out = g.op( | |
'mmcv::SoftNonMaxSuppression', | |
boxes, | |
scores, | |
iou_threshold_f=float(iou_threshold), | |
sigma_f=float(sigma), | |
min_score_f=float(min_score), | |
method_i=int(method), | |
offset_i=int(offset), | |
outputs=2) | |
return nms_out | |
def nms(boxes, scores, iou_threshold, offset=0, score_threshold=0, max_num=-1): | |
"""Dispatch to either CPU or GPU NMS implementations. | |
The input can be either torch tensor or numpy array. GPU NMS will be used | |
if the input is gpu tensor, otherwise CPU NMS | |
will be used. The returned type will always be the same as inputs. | |
Arguments: | |
boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4). | |
scores (torch.Tensor or np.ndarray): scores in shape (N, ). | |
iou_threshold (float): IoU threshold for NMS. | |
offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset). | |
score_threshold (float): score threshold for NMS. | |
max_num (int): maximum number of boxes after NMS. | |
Returns: | |
tuple: kept dets(boxes and scores) and indice, which is always the \ | |
same data type as the input. | |
Example: | |
>>> boxes = np.array([[49.1, 32.4, 51.0, 35.9], | |
>>> [49.3, 32.9, 51.0, 35.3], | |
>>> [49.2, 31.8, 51.0, 35.4], | |
>>> [35.1, 11.5, 39.1, 15.7], | |
>>> [35.6, 11.8, 39.3, 14.2], | |
>>> [35.3, 11.5, 39.9, 14.5], | |
>>> [35.2, 11.7, 39.7, 15.7]], dtype=np.float32) | |
>>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.5, 0.4, 0.3],\ | |
dtype=np.float32) | |
>>> iou_threshold = 0.6 | |
>>> dets, inds = nms(boxes, scores, iou_threshold) | |
>>> assert len(inds) == len(dets) == 3 | |
""" | |
assert isinstance(boxes, (torch.Tensor, np.ndarray)) | |
assert isinstance(scores, (torch.Tensor, np.ndarray)) | |
is_numpy = False | |
if isinstance(boxes, np.ndarray): | |
is_numpy = True | |
boxes = torch.from_numpy(boxes) | |
if isinstance(scores, np.ndarray): | |
scores = torch.from_numpy(scores) | |
assert boxes.size(1) == 4 | |
assert boxes.size(0) == scores.size(0) | |
assert offset in (0, 1) | |
if torch.__version__ == 'parrots': | |
indata_list = [boxes, scores] | |
indata_dict = { | |
'iou_threshold': float(iou_threshold), | |
'offset': int(offset) | |
} | |
inds = ext_module.nms(*indata_list, **indata_dict) | |
else: | |
inds = NMSop.apply(boxes, scores, iou_threshold, offset, | |
score_threshold, max_num) | |
dets = torch.cat((boxes[inds], scores[inds].reshape(-1, 1)), dim=1) | |
if is_numpy: | |
dets = dets.cpu().numpy() | |
inds = inds.cpu().numpy() | |
return dets, inds | |
def soft_nms(boxes, | |
scores, | |
iou_threshold=0.3, | |
sigma=0.5, | |
min_score=1e-3, | |
method='linear', | |
offset=0): | |
"""Dispatch to only CPU Soft NMS implementations. | |
The input can be either a torch tensor or numpy array. | |
The returned type will always be the same as inputs. | |
Arguments: | |
boxes (torch.Tensor or np.ndarray): boxes in shape (N, 4). | |
scores (torch.Tensor or np.ndarray): scores in shape (N, ). | |
iou_threshold (float): IoU threshold for NMS. | |
sigma (float): hyperparameter for gaussian method | |
min_score (float): score filter threshold | |
method (str): either 'linear' or 'gaussian' | |
offset (int, 0 or 1): boxes' width or height is (x2 - x1 + offset). | |
Returns: | |
tuple: kept dets(boxes and scores) and indice, which is always the \ | |
same data type as the input. | |
Example: | |
>>> boxes = np.array([[4., 3., 5., 3.], | |
>>> [4., 3., 5., 4.], | |
>>> [3., 1., 3., 1.], | |
>>> [3., 1., 3., 1.], | |
>>> [3., 1., 3., 1.], | |
>>> [3., 1., 3., 1.]], dtype=np.float32) | |
>>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.4, 0.0], dtype=np.float32) | |
>>> iou_threshold = 0.6 | |
>>> dets, inds = soft_nms(boxes, scores, iou_threshold, sigma=0.5) | |
>>> assert len(inds) == len(dets) == 5 | |
""" | |
assert isinstance(boxes, (torch.Tensor, np.ndarray)) | |
assert isinstance(scores, (torch.Tensor, np.ndarray)) | |
is_numpy = False | |
if isinstance(boxes, np.ndarray): | |
is_numpy = True | |
boxes = torch.from_numpy(boxes) | |
if isinstance(scores, np.ndarray): | |
scores = torch.from_numpy(scores) | |
assert boxes.size(1) == 4 | |
assert boxes.size(0) == scores.size(0) | |
assert offset in (0, 1) | |
method_dict = {'naive': 0, 'linear': 1, 'gaussian': 2} | |
assert method in method_dict.keys() | |
if torch.__version__ == 'parrots': | |
dets = boxes.new_empty((boxes.size(0), 5), device='cpu') | |
indata_list = [boxes.cpu(), scores.cpu(), dets.cpu()] | |
indata_dict = { | |
'iou_threshold': float(iou_threshold), | |
'sigma': float(sigma), | |
'min_score': min_score, | |
'method': method_dict[method], | |
'offset': int(offset) | |
} | |
inds = ext_module.softnms(*indata_list, **indata_dict) | |
else: | |
dets, inds = SoftNMSop.apply(boxes.cpu(), scores.cpu(), | |
float(iou_threshold), float(sigma), | |
float(min_score), method_dict[method], | |
int(offset)) | |
dets = dets[:inds.size(0)] | |
if is_numpy: | |
dets = dets.cpu().numpy() | |
inds = inds.cpu().numpy() | |
return dets, inds | |
else: | |
return dets.to(device=boxes.device), inds.to(device=boxes.device) | |
def batched_nms(boxes, scores, idxs, nms_cfg, class_agnostic=False): | |
"""Performs non-maximum suppression in a batched fashion. | |
Modified from https://github.com/pytorch/vision/blob | |
/505cd6957711af790211896d32b40291bea1bc21/torchvision/ops/boxes.py#L39. | |
In order to perform NMS independently per class, we add an offset to all | |
the boxes. The offset is dependent only on the class idx, and is large | |
enough so that boxes from different classes do not overlap. | |
Arguments: | |
boxes (torch.Tensor): boxes in shape (N, 4). | |
scores (torch.Tensor): scores in shape (N, ). | |
idxs (torch.Tensor): each index value correspond to a bbox cluster, | |
and NMS will not be applied between elements of different idxs, | |
shape (N, ). | |
nms_cfg (dict): specify nms type and other parameters like iou_thr. | |
Possible keys includes the following. | |
- iou_thr (float): IoU threshold used for NMS. | |
- split_thr (float): threshold number of boxes. In some cases the | |
number of boxes is large (e.g., 200k). To avoid OOM during | |
training, the users could set `split_thr` to a small value. | |
If the number of boxes is greater than the threshold, it will | |
perform NMS on each group of boxes separately and sequentially. | |
Defaults to 10000. | |
class_agnostic (bool): if true, nms is class agnostic, | |
i.e. IoU thresholding happens over all boxes, | |
regardless of the predicted class. | |
Returns: | |
tuple: kept dets and indice. | |
""" | |
nms_cfg_ = nms_cfg.copy() | |
class_agnostic = nms_cfg_.pop('class_agnostic', class_agnostic) | |
if class_agnostic: | |
boxes_for_nms = boxes | |
else: | |
max_coordinate = boxes.max() | |
offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes)) | |
boxes_for_nms = boxes + offsets[:, None] | |
nms_type = nms_cfg_.pop('type', 'nms') | |
nms_op = eval(nms_type) | |
split_thr = nms_cfg_.pop('split_thr', 10000) | |
# Won't split to multiple nms nodes when exporting to onnx | |
if boxes_for_nms.shape[0] < split_thr or torch.onnx.is_in_onnx_export(): | |
dets, keep = nms_op(boxes_for_nms, scores, **nms_cfg_) | |
boxes = boxes[keep] | |
# -1 indexing works abnormal in TensorRT | |
# This assumes `dets` has 5 dimensions where | |
# the last dimension is score. | |
# TODO: more elegant way to handle the dimension issue. | |
# Some type of nms would reweight the score, such as SoftNMS | |
scores = dets[:, 4] | |
else: | |
max_num = nms_cfg_.pop('max_num', -1) | |
total_mask = scores.new_zeros(scores.size(), dtype=torch.bool) | |
# Some type of nms would reweight the score, such as SoftNMS | |
scores_after_nms = scores.new_zeros(scores.size()) | |
for id in torch.unique(idxs): | |
mask = (idxs == id).nonzero(as_tuple=False).view(-1) | |
dets, keep = nms_op(boxes_for_nms[mask], scores[mask], **nms_cfg_) | |
total_mask[mask[keep]] = True | |
scores_after_nms[mask[keep]] = dets[:, -1] | |
keep = total_mask.nonzero(as_tuple=False).view(-1) | |
scores, inds = scores_after_nms[keep].sort(descending=True) | |
keep = keep[inds] | |
boxes = boxes[keep] | |
if max_num > 0: | |
keep = keep[:max_num] | |
boxes = boxes[:max_num] | |
scores = scores[:max_num] | |
return torch.cat([boxes, scores[:, None]], -1), keep | |
def nms_match(dets, iou_threshold): | |
"""Matched dets into different groups by NMS. | |
NMS match is Similar to NMS but when a bbox is suppressed, nms match will | |
record the indice of suppressed bbox and form a group with the indice of | |
kept bbox. In each group, indice is sorted as score order. | |
Arguments: | |
dets (torch.Tensor | np.ndarray): Det boxes with scores, shape (N, 5). | |
iou_thr (float): IoU thresh for NMS. | |
Returns: | |
List[torch.Tensor | np.ndarray]: The outer list corresponds different | |
matched group, the inner Tensor corresponds the indices for a group | |
in score order. | |
""" | |
if dets.shape[0] == 0: | |
matched = [] | |
else: | |
assert dets.shape[-1] == 5, 'inputs dets.shape should be (N, 5), ' \ | |
f'but get {dets.shape}' | |
if isinstance(dets, torch.Tensor): | |
dets_t = dets.detach().cpu() | |
else: | |
dets_t = torch.from_numpy(dets) | |
indata_list = [dets_t] | |
indata_dict = {'iou_threshold': float(iou_threshold)} | |
matched = ext_module.nms_match(*indata_list, **indata_dict) | |
if torch.__version__ == 'parrots': | |
matched = matched.tolist() | |
if isinstance(dets, torch.Tensor): | |
return [dets.new_tensor(m, dtype=torch.long) for m in matched] | |
else: | |
return [np.array(m, dtype=np.int) for m in matched] | |
def nms_rotated(dets, scores, iou_threshold, labels=None): | |
"""Performs non-maximum suppression (NMS) on the rotated boxes according to | |
their intersection-over-union (IoU). | |
Rotated NMS iteratively removes lower scoring rotated boxes which have an | |
IoU greater than iou_threshold with another (higher scoring) rotated box. | |
Args: | |
boxes (Tensor): Rotated boxes in shape (N, 5). They are expected to \ | |
be in (x_ctr, y_ctr, width, height, angle_radian) format. | |
scores (Tensor): scores in shape (N, ). | |
iou_threshold (float): IoU thresh for NMS. | |
labels (Tensor): boxes' label in shape (N,). | |
Returns: | |
tuple: kept dets(boxes and scores) and indice, which is always the \ | |
same data type as the input. | |
""" | |
if dets.shape[0] == 0: | |
return dets, None | |
multi_label = labels is not None | |
if multi_label: | |
dets_wl = torch.cat((dets, labels.unsqueeze(1)), 1) | |
else: | |
dets_wl = dets | |
_, order = scores.sort(0, descending=True) | |
dets_sorted = dets_wl.index_select(0, order) | |
if torch.__version__ == 'parrots': | |
keep_inds = ext_module.nms_rotated( | |
dets_wl, | |
scores, | |
order, | |
dets_sorted, | |
iou_threshold=iou_threshold, | |
multi_label=multi_label) | |
else: | |
keep_inds = ext_module.nms_rotated(dets_wl, scores, order, dets_sorted, | |
iou_threshold, multi_label) | |
dets = torch.cat((dets[keep_inds], scores[keep_inds].reshape(-1, 1)), | |
dim=1) | |
return dets, keep_inds | |