Spaces:
Sleeping
Sleeping
# Modified from https://github.com/hszhao/semseg/blob/master/lib/psa | |
from torch import nn | |
from torch.autograd import Function | |
from torch.nn.modules.utils import _pair | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext('_ext', | |
['psamask_forward', 'psamask_backward']) | |
class PSAMaskFunction(Function): | |
def symbolic(g, input, psa_type, mask_size): | |
return g.op( | |
'mmcv::MMCVPSAMask', | |
input, | |
psa_type_i=psa_type, | |
mask_size_i=mask_size) | |
def forward(ctx, input, psa_type, mask_size): | |
ctx.psa_type = psa_type | |
ctx.mask_size = _pair(mask_size) | |
ctx.save_for_backward(input) | |
h_mask, w_mask = ctx.mask_size | |
batch_size, channels, h_feature, w_feature = input.size() | |
assert channels == h_mask * w_mask | |
output = input.new_zeros( | |
(batch_size, h_feature * w_feature, h_feature, w_feature)) | |
ext_module.psamask_forward( | |
input, | |
output, | |
psa_type=psa_type, | |
num_=batch_size, | |
h_feature=h_feature, | |
w_feature=w_feature, | |
h_mask=h_mask, | |
w_mask=w_mask, | |
half_h_mask=(h_mask - 1) // 2, | |
half_w_mask=(w_mask - 1) // 2) | |
return output | |
def backward(ctx, grad_output): | |
input = ctx.saved_tensors[0] | |
psa_type = ctx.psa_type | |
h_mask, w_mask = ctx.mask_size | |
batch_size, channels, h_feature, w_feature = input.size() | |
grad_input = grad_output.new_zeros( | |
(batch_size, channels, h_feature, w_feature)) | |
ext_module.psamask_backward( | |
grad_output, | |
grad_input, | |
psa_type=psa_type, | |
num_=batch_size, | |
h_feature=h_feature, | |
w_feature=w_feature, | |
h_mask=h_mask, | |
w_mask=w_mask, | |
half_h_mask=(h_mask - 1) // 2, | |
half_w_mask=(w_mask - 1) // 2) | |
return grad_input, None, None, None | |
psa_mask = PSAMaskFunction.apply | |
class PSAMask(nn.Module): | |
def __init__(self, psa_type, mask_size=None): | |
super(PSAMask, self).__init__() | |
assert psa_type in ['collect', 'distribute'] | |
if psa_type == 'collect': | |
psa_type_enum = 0 | |
else: | |
psa_type_enum = 1 | |
self.psa_type_enum = psa_type_enum | |
self.mask_size = mask_size | |
self.psa_type = psa_type | |
def forward(self, input): | |
return psa_mask(input, self.psa_type_enum, self.mask_size) | |
def __repr__(self): | |
s = self.__class__.__name__ | |
s += f'(psa_type={self.psa_type}, ' | |
s += f'mask_size={self.mask_size})' | |
return s | |