Spaces:
Sleeping
Sleeping
from typing import Tuple | |
import torch | |
from torch.autograd import Function | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext( | |
'_ext', ['three_interpolate_forward', 'three_interpolate_backward']) | |
class ThreeInterpolate(Function): | |
"""Performs weighted linear interpolation on 3 features. | |
Please refer to `Paper of PointNet++ <https://arxiv.org/abs/1706.02413>`_ | |
for more details. | |
""" | |
def forward(ctx, features: torch.Tensor, indices: torch.Tensor, | |
weight: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
features (Tensor): (B, C, M) Features descriptors to be | |
interpolated | |
indices (Tensor): (B, n, 3) index three nearest neighbors | |
of the target features in features | |
weight (Tensor): (B, n, 3) weights of interpolation | |
Returns: | |
Tensor: (B, C, N) tensor of the interpolated features | |
""" | |
assert features.is_contiguous() | |
assert indices.is_contiguous() | |
assert weight.is_contiguous() | |
B, c, m = features.size() | |
n = indices.size(1) | |
ctx.three_interpolate_for_backward = (indices, weight, m) | |
output = torch.cuda.FloatTensor(B, c, n) | |
ext_module.three_interpolate_forward( | |
features, indices, weight, output, b=B, c=c, m=m, n=n) | |
return output | |
def backward( | |
ctx, grad_out: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Args: | |
grad_out (Tensor): (B, C, N) tensor with gradients of outputs | |
Returns: | |
Tensor: (B, C, M) tensor with gradients of features | |
""" | |
idx, weight, m = ctx.three_interpolate_for_backward | |
B, c, n = grad_out.size() | |
grad_features = torch.cuda.FloatTensor(B, c, m).zero_() | |
grad_out_data = grad_out.data.contiguous() | |
ext_module.three_interpolate_backward( | |
grad_out_data, idx, weight, grad_features.data, b=B, c=c, n=n, m=m) | |
return grad_features, None, None | |
three_interpolate = ThreeInterpolate.apply | |