Spaces:
Starting
on
A10G
Starting
on
A10G
import torch | |
import einops | |
import ldm.modules.encoders.modules | |
import ldm.modules.attention | |
from transformers import logging | |
from ldm.modules.attention import default | |
def disable_verbosity(): | |
logging.set_verbosity_error() | |
print('logging improved.') | |
return | |
def enable_sliced_attention(): | |
ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward | |
print('Enabled sliced_attention.') | |
return | |
def hack_everything(clip_skip=0): | |
disable_verbosity() | |
ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward | |
ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip | |
print('Enabled clip hacks.') | |
return | |
# Written by Lvmin | |
def _hacked_clip_forward(self, text): | |
PAD = self.tokenizer.pad_token_id | |
EOS = self.tokenizer.eos_token_id | |
BOS = self.tokenizer.bos_token_id | |
def tokenize(t): | |
return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"] | |
def transformer_encode(t): | |
if self.clip_skip > 1: | |
rt = self.transformer(input_ids=t, output_hidden_states=True) | |
return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip]) | |
else: | |
return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state | |
def split(x): | |
return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3] | |
def pad(x, p, i): | |
return x[:i] if len(x) >= i else x + [p] * (i - len(x)) | |
raw_tokens_list = tokenize(text) | |
tokens_list = [] | |
for raw_tokens in raw_tokens_list: | |
raw_tokens_123 = split(raw_tokens) | |
raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123] | |
raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123] | |
tokens_list.append(raw_tokens_123) | |
tokens_list = torch.IntTensor(tokens_list).to(self.device) | |
feed = einops.rearrange(tokens_list, 'b f i -> (b f) i') | |
y = transformer_encode(feed) | |
z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3) | |
return z | |
# Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py | |
def _hacked_sliced_attentin_forward(self, x, context=None, mask=None): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
del context, x | |
q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
limit = k.shape[0] | |
att_step = 1 | |
q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0)) | |
k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0)) | |
v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0)) | |
q_chunks.reverse() | |
k_chunks.reverse() | |
v_chunks.reverse() | |
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) | |
del k, q, v | |
for i in range(0, limit, att_step): | |
q_buffer = q_chunks.pop() | |
k_buffer = k_chunks.pop() | |
v_buffer = v_chunks.pop() | |
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale | |
del k_buffer, q_buffer | |
# attention, what we cannot get enough of, by chunks | |
sim_buffer = sim_buffer.softmax(dim=-1) | |
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer) | |
del v_buffer | |
sim[i:i + att_step, :, :] = sim_buffer | |
del sim_buffer | |
sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h) | |
return self.to_out(sim) | |