Spaces:
Sleeping
Sleeping
# MIT License | |
# | |
# Copyright (c) 2018 Tom Runia | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to conditions. | |
# | |
# Author: Tom Runia | |
# Date Created: 2018-08-03 | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
def make_colorwheel(): | |
''' | |
Generates a color wheel for optical flow visualization as presented in: | |
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) | |
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf | |
According to the C++ source code of Daniel Scharstein | |
According to the Matlab source code of Deqing Sun | |
''' | |
RY = 15 | |
YG = 6 | |
GC = 4 | |
CB = 11 | |
BM = 13 | |
MR = 6 | |
ncols = RY + YG + GC + CB + BM + MR | |
colorwheel = np.zeros((ncols, 3)) | |
col = 0 | |
# RY | |
colorwheel[0:RY, 0] = 255 | |
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY) | |
col = col + RY | |
# YG | |
colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG) | |
colorwheel[col:col + YG, 1] = 255 | |
col = col + YG | |
# GC | |
colorwheel[col:col + GC, 1] = 255 | |
colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC) | |
col = col + GC | |
# CB | |
colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB) | |
colorwheel[col:col + CB, 2] = 255 | |
col = col + CB | |
# BM | |
colorwheel[col:col + BM, 2] = 255 | |
colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM) | |
col = col + BM | |
# MR | |
colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR) | |
colorwheel[col:col + MR, 0] = 255 | |
return colorwheel | |
def flow_compute_color(u, v, convert_to_bgr=False): | |
''' | |
Applies the flow color wheel to (possibly clipped) flow components u and v. | |
According to the C++ source code of Daniel Scharstein | |
According to the Matlab source code of Deqing Sun | |
:param u: np.ndarray, input horizontal flow | |
:param v: np.ndarray, input vertical flow | |
:param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB | |
:return: | |
''' | |
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) | |
colorwheel = make_colorwheel() # shape [55x3] | |
ncols = colorwheel.shape[0] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
a = np.arctan2(-v, -u) / np.pi | |
fk = (a + 1) / 2 * (ncols - 1) + 1 | |
k0 = np.floor(fk).astype(np.int32) | |
k1 = k0 + 1 | |
k1[k1 == ncols] = 1 | |
f = fk - k0 | |
for i in range(colorwheel.shape[1]): | |
tmp = colorwheel[:, i] | |
col0 = tmp[k0] / 255.0 | |
col1 = tmp[k1] / 255.0 | |
col = (1 - f) * col0 + f * col1 | |
idx = (rad <= 1) | |
col[idx] = 1 - rad[idx] * (1 - col[idx]) | |
col[~idx] = col[~idx] * 0.75 # out of range? | |
# Note the 2-i => BGR instead of RGB | |
ch_idx = 2 - i if convert_to_bgr else i | |
flow_image[:, :, ch_idx] = np.floor(255 * col) | |
return flow_image | |
def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False): | |
''' | |
Expects a two dimensional flow image of shape [H,W,2] | |
According to the C++ source code of Daniel Scharstein | |
According to the Matlab source code of Deqing Sun | |
:param flow_uv: np.ndarray of shape [H,W,2] | |
:param clip_flow: float, maximum clipping value for flow | |
:return: | |
''' | |
assert flow_uv.ndim == 3, 'input flow must have three dimensions' | |
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' | |
if clip_flow is not None: | |
flow_uv = np.clip(flow_uv, 0, clip_flow) | |
u = flow_uv[:, :, 0] | |
v = flow_uv[:, :, 1] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
rad_max = np.max(rad) | |
epsilon = 1e-5 | |
u = u / (rad_max + epsilon) | |
v = v / (rad_max + epsilon) | |
return flow_compute_color(u, v, convert_to_bgr) | |
UNKNOWN_FLOW_THRESH = 1e7 | |
SMALLFLOW = 0.0 | |
LARGEFLOW = 1e8 | |
def make_color_wheel(): | |
""" | |
Generate color wheel according Middlebury color code | |
:return: Color wheel | |
""" | |
RY = 15 | |
YG = 6 | |
GC = 4 | |
CB = 11 | |
BM = 13 | |
MR = 6 | |
ncols = RY + YG + GC + CB + BM + MR | |
colorwheel = np.zeros([ncols, 3]) | |
col = 0 | |
# RY | |
colorwheel[0:RY, 0] = 255 | |
colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) | |
col += RY | |
# YG | |
colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG)) | |
colorwheel[col:col + YG, 1] = 255 | |
col += YG | |
# GC | |
colorwheel[col:col + GC, 1] = 255 | |
colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) | |
col += GC | |
# CB | |
colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB)) | |
colorwheel[col:col + CB, 2] = 255 | |
col += CB | |
# BM | |
colorwheel[col:col + BM, 2] = 255 | |
colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) | |
col += + BM | |
# MR | |
colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) | |
colorwheel[col:col + MR, 0] = 255 | |
return colorwheel | |
def compute_color(u, v): | |
""" | |
compute optical flow color map | |
:param u: optical flow horizontal map | |
:param v: optical flow vertical map | |
:return: optical flow in color code | |
""" | |
[h, w] = u.shape | |
img = np.zeros([h, w, 3]) | |
nanIdx = np.isnan(u) | np.isnan(v) | |
u[nanIdx] = 0 | |
v[nanIdx] = 0 | |
colorwheel = make_color_wheel() | |
ncols = np.size(colorwheel, 0) | |
rad = np.sqrt(u ** 2 + v ** 2) | |
a = np.arctan2(-v, -u) / np.pi | |
fk = (a + 1) / 2 * (ncols - 1) + 1 | |
k0 = np.floor(fk).astype(int) | |
k1 = k0 + 1 | |
k1[k1 == ncols + 1] = 1 | |
f = fk - k0 | |
for i in range(0, np.size(colorwheel, 1)): | |
tmp = colorwheel[:, i] | |
col0 = tmp[k0 - 1] / 255 | |
col1 = tmp[k1 - 1] / 255 | |
col = (1 - f) * col0 + f * col1 | |
idx = rad <= 1 | |
col[idx] = 1 - rad[idx] * (1 - col[idx]) | |
notidx = np.logical_not(idx) | |
col[notidx] *= 0.75 | |
img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx))) | |
return img | |
# from https://github.com/gengshan-y/VCN | |
def flow_to_image(flow): | |
""" | |
Convert flow into middlebury color code image | |
:param flow: optical flow map | |
:return: optical flow image in middlebury color | |
""" | |
u = flow[:, :, 0] | |
v = flow[:, :, 1] | |
maxu = -999. | |
maxv = -999. | |
minu = 999. | |
minv = 999. | |
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) | |
u[idxUnknow] = 0 | |
v[idxUnknow] = 0 | |
maxu = max(maxu, np.max(u)) | |
minu = min(minu, np.min(u)) | |
maxv = max(maxv, np.max(v)) | |
minv = min(minv, np.min(v)) | |
rad = np.sqrt(u ** 2 + v ** 2) | |
maxrad = max(-1, np.max(rad)) | |
u = u / (maxrad + np.finfo(float).eps) | |
v = v / (maxrad + np.finfo(float).eps) | |
img = compute_color(u, v) | |
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) | |
img[idx] = 0 | |
return np.uint8(img) | |
def save_vis_flow_tofile(flow, output_path): | |
vis_flow = flow_to_image(flow) | |
from PIL import Image | |
img = Image.fromarray(vis_flow) | |
img.save(output_path) | |
def flow_tensor_to_image(flow): | |
"""Used for tensorboard visualization""" | |
flow = flow.permute(1, 2, 0) # [H, W, 2] | |
flow = flow.detach().cpu().numpy() | |
flow = flow_to_image(flow) # [H, W, 3] | |
flow = np.transpose(flow, (2, 0, 1)) # [3, H, W] | |
return flow | |