Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
from torch.autograd import Function | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext( | |
'_ext', ['gather_points_forward', 'gather_points_backward']) | |
class GatherPoints(Function): | |
"""Gather points with given index.""" | |
def forward(ctx, features: torch.Tensor, | |
indices: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
features (Tensor): (B, C, N) features to gather. | |
indices (Tensor): (B, M) where M is the number of points. | |
Returns: | |
Tensor: (B, C, M) where M is the number of points. | |
""" | |
assert features.is_contiguous() | |
assert indices.is_contiguous() | |
B, npoint = indices.size() | |
_, C, N = features.size() | |
output = torch.cuda.FloatTensor(B, C, npoint) | |
ext_module.gather_points_forward( | |
features, indices, output, b=B, c=C, n=N, npoints=npoint) | |
ctx.for_backwards = (indices, C, N) | |
if torch.__version__ != 'parrots': | |
ctx.mark_non_differentiable(indices) | |
return output | |
def backward(ctx, grad_out): | |
idx, C, N = ctx.for_backwards | |
B, npoint = idx.size() | |
grad_features = torch.cuda.FloatTensor(B, C, N).zero_() | |
grad_out_data = grad_out.data.contiguous() | |
ext_module.gather_points_backward( | |
grad_out_data, | |
idx, | |
grad_features.data, | |
b=B, | |
c=C, | |
n=N, | |
npoints=npoint) | |
return grad_features, None | |
gather_points = GatherPoints.apply | |