Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn.modules.utils import _pair | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext('_ext', | |
['roi_pool_forward', 'roi_pool_backward']) | |
class RoIPoolFunction(Function): | |
def symbolic(g, input, rois, output_size, spatial_scale): | |
return g.op( | |
'MaxRoiPool', | |
input, | |
rois, | |
pooled_shape_i=output_size, | |
spatial_scale_f=spatial_scale) | |
def forward(ctx, input, rois, output_size, spatial_scale=1.0): | |
ctx.output_size = _pair(output_size) | |
ctx.spatial_scale = spatial_scale | |
ctx.input_shape = input.size() | |
assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' | |
output_shape = (rois.size(0), input.size(1), ctx.output_size[0], | |
ctx.output_size[1]) | |
output = input.new_zeros(output_shape) | |
argmax = input.new_zeros(output_shape, dtype=torch.int) | |
ext_module.roi_pool_forward( | |
input, | |
rois, | |
output, | |
argmax, | |
pooled_height=ctx.output_size[0], | |
pooled_width=ctx.output_size[1], | |
spatial_scale=ctx.spatial_scale) | |
ctx.save_for_backward(rois, argmax) | |
return output | |
def backward(ctx, grad_output): | |
rois, argmax = ctx.saved_tensors | |
grad_input = grad_output.new_zeros(ctx.input_shape) | |
ext_module.roi_pool_backward( | |
grad_output, | |
rois, | |
argmax, | |
grad_input, | |
pooled_height=ctx.output_size[0], | |
pooled_width=ctx.output_size[1], | |
spatial_scale=ctx.spatial_scale) | |
return grad_input, None, None, None | |
roi_pool = RoIPoolFunction.apply | |
class RoIPool(nn.Module): | |
def __init__(self, output_size, spatial_scale=1.0): | |
super(RoIPool, self).__init__() | |
self.output_size = _pair(output_size) | |
self.spatial_scale = float(spatial_scale) | |
def forward(self, input, rois): | |
return roi_pool(input, rois, self.output_size, self.spatial_scale) | |
def __repr__(self): | |
s = self.__class__.__name__ | |
s += f'(output_size={self.output_size}, ' | |
s += f'spatial_scale={self.spatial_scale})' | |
return s | |