Spaces:
Running
on
A10G
Running
on
A10G
import os.path as osp | |
import pickle | |
import shutil | |
import tempfile | |
import annotator.uniformer.mmcv as mmcv | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
from annotator.uniformer.mmcv.image import tensor2imgs | |
from annotator.uniformer.mmcv.runner import get_dist_info | |
def np2tmp(array, temp_file_name=None): | |
"""Save ndarray to local numpy file. | |
Args: | |
array (ndarray): Ndarray to save. | |
temp_file_name (str): Numpy file name. If 'temp_file_name=None', this | |
function will generate a file name with tempfile.NamedTemporaryFile | |
to save ndarray. Default: None. | |
Returns: | |
str: The numpy file name. | |
""" | |
if temp_file_name is None: | |
temp_file_name = tempfile.NamedTemporaryFile( | |
suffix='.npy', delete=False).name | |
np.save(temp_file_name, array) | |
return temp_file_name | |
def single_gpu_test(model, | |
data_loader, | |
show=False, | |
out_dir=None, | |
efficient_test=False, | |
opacity=0.5): | |
"""Test with single GPU. | |
Args: | |
model (nn.Module): Model to be tested. | |
data_loader (utils.data.Dataloader): Pytorch data loader. | |
show (bool): Whether show results during inference. Default: False. | |
out_dir (str, optional): If specified, the results will be dumped into | |
the directory to save output results. | |
efficient_test (bool): Whether save the results as local numpy files to | |
save CPU memory during evaluation. Default: False. | |
opacity(float): Opacity of painted segmentation map. | |
Default 0.5. | |
Must be in (0, 1] range. | |
Returns: | |
list: The prediction results. | |
""" | |
model.eval() | |
results = [] | |
dataset = data_loader.dataset | |
prog_bar = mmcv.ProgressBar(len(dataset)) | |
for i, data in enumerate(data_loader): | |
with torch.no_grad(): | |
result = model(return_loss=False, **data) | |
if show or out_dir: | |
img_tensor = data['img'][0] | |
img_metas = data['img_metas'][0].data[0] | |
imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) | |
assert len(imgs) == len(img_metas) | |
for img, img_meta in zip(imgs, img_metas): | |
h, w, _ = img_meta['img_shape'] | |
img_show = img[:h, :w, :] | |
ori_h, ori_w = img_meta['ori_shape'][:-1] | |
img_show = mmcv.imresize(img_show, (ori_w, ori_h)) | |
if out_dir: | |
out_file = osp.join(out_dir, img_meta['ori_filename']) | |
else: | |
out_file = None | |
model.module.show_result( | |
img_show, | |
result, | |
palette=dataset.PALETTE, | |
show=show, | |
out_file=out_file, | |
opacity=opacity) | |
if isinstance(result, list): | |
if efficient_test: | |
result = [np2tmp(_) for _ in result] | |
results.extend(result) | |
else: | |
if efficient_test: | |
result = np2tmp(result) | |
results.append(result) | |
batch_size = len(result) | |
for _ in range(batch_size): | |
prog_bar.update() | |
return results | |
def multi_gpu_test(model, | |
data_loader, | |
tmpdir=None, | |
gpu_collect=False, | |
efficient_test=False): | |
"""Test model with multiple gpus. | |
This method tests model with multiple gpus and collects the results | |
under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' | |
it encodes results to gpu tensors and use gpu communication for results | |
collection. On cpu mode it saves the results on different gpus to 'tmpdir' | |
and collects them by the rank 0 worker. | |
Args: | |
model (nn.Module): Model to be tested. | |
data_loader (utils.data.Dataloader): Pytorch data loader. | |
tmpdir (str): Path of directory to save the temporary results from | |
different gpus under cpu mode. | |
gpu_collect (bool): Option to use either gpu or cpu to collect results. | |
efficient_test (bool): Whether save the results as local numpy files to | |
save CPU memory during evaluation. Default: False. | |
Returns: | |
list: The prediction results. | |
""" | |
model.eval() | |
results = [] | |
dataset = data_loader.dataset | |
rank, world_size = get_dist_info() | |
if rank == 0: | |
prog_bar = mmcv.ProgressBar(len(dataset)) | |
for i, data in enumerate(data_loader): | |
with torch.no_grad(): | |
result = model(return_loss=False, rescale=True, **data) | |
if isinstance(result, list): | |
if efficient_test: | |
result = [np2tmp(_) for _ in result] | |
results.extend(result) | |
else: | |
if efficient_test: | |
result = np2tmp(result) | |
results.append(result) | |
if rank == 0: | |
batch_size = data['img'][0].size(0) | |
for _ in range(batch_size * world_size): | |
prog_bar.update() | |
# collect results from all ranks | |
if gpu_collect: | |
results = collect_results_gpu(results, len(dataset)) | |
else: | |
results = collect_results_cpu(results, len(dataset), tmpdir) | |
return results | |
def collect_results_cpu(result_part, size, tmpdir=None): | |
"""Collect results with CPU.""" | |
rank, world_size = get_dist_info() | |
# create a tmp dir if it is not specified | |
if tmpdir is None: | |
MAX_LEN = 512 | |
# 32 is whitespace | |
dir_tensor = torch.full((MAX_LEN, ), | |
32, | |
dtype=torch.uint8, | |
device='cuda') | |
if rank == 0: | |
tmpdir = tempfile.mkdtemp() | |
tmpdir = torch.tensor( | |
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') | |
dir_tensor[:len(tmpdir)] = tmpdir | |
dist.broadcast(dir_tensor, 0) | |
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() | |
else: | |
mmcv.mkdir_or_exist(tmpdir) | |
# dump the part result to the dir | |
mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank))) | |
dist.barrier() | |
# collect all parts | |
if rank != 0: | |
return None | |
else: | |
# load results of all parts from tmp dir | |
part_list = [] | |
for i in range(world_size): | |
part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i)) | |
part_list.append(mmcv.load(part_file)) | |
# sort the results | |
ordered_results = [] | |
for res in zip(*part_list): | |
ordered_results.extend(list(res)) | |
# the dataloader may pad some samples | |
ordered_results = ordered_results[:size] | |
# remove tmp dir | |
shutil.rmtree(tmpdir) | |
return ordered_results | |
def collect_results_gpu(result_part, size): | |
"""Collect results with GPU.""" | |
rank, world_size = get_dist_info() | |
# dump result part to tensor with pickle | |
part_tensor = torch.tensor( | |
bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') | |
# gather all result part tensor shape | |
shape_tensor = torch.tensor(part_tensor.shape, device='cuda') | |
shape_list = [shape_tensor.clone() for _ in range(world_size)] | |
dist.all_gather(shape_list, shape_tensor) | |
# padding result part tensor to max length | |
shape_max = torch.tensor(shape_list).max() | |
part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') | |
part_send[:shape_tensor[0]] = part_tensor | |
part_recv_list = [ | |
part_tensor.new_zeros(shape_max) for _ in range(world_size) | |
] | |
# gather all result part | |
dist.all_gather(part_recv_list, part_send) | |
if rank == 0: | |
part_list = [] | |
for recv, shape in zip(part_recv_list, shape_list): | |
part_list.append( | |
pickle.loads(recv[:shape[0]].cpu().numpy().tobytes())) | |
# sort the results | |
ordered_results = [] | |
for res in zip(*part_list): | |
ordered_results.extend(list(res)) | |
# the dataloader may pad some samples | |
ordered_results = ordered_results[:size] | |
return ordered_results | |