Rerender / app.py
radames's picture
add midas depth and env for MAX_KEYFRAME
c962acd
raw
history blame
39.6 kB
import os
import shutil
from enum import Enum
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from blendmodes.blend import BlendType, blendLayers
from PIL import Image
from pytorch_lightning import seed_everything
from safetensors.torch import load_file
from skimage import exposure
import src.import_util # noqa: F401
from ControlNet.annotator.canny import CannyDetector
from ControlNet.annotator.hed import HEDdetector
from ControlNet.annotator.midas import MidasDetector
from ControlNet.annotator.util import HWC3
from ControlNet.cldm.model import create_model, load_state_dict
from gmflow_module.gmflow.gmflow import GMFlow
from flow.flow_utils import get_warped_and_mask
from sd_model_cfg import model_dict
from src.config import RerenderConfig
from src.controller import AttentionControl
from src.ddim_v_hacked import DDIMVSampler
from src.img_util import find_flat_region, numpy2tensor
from src.video_util import (frame_to_video, get_fps, get_frame_count,
prepare_frames)
import huggingface_hub
REPO_NAME = 'Anonymous-sub/Rerender'
huggingface_hub.hf_hub_download(REPO_NAME,
'pexels-koolshooters-7322716.mp4',
local_dir='videos')
huggingface_hub.hf_hub_download(
REPO_NAME,
'pexels-antoni-shkraba-8048492-540x960-25fps.mp4',
local_dir='videos')
huggingface_hub.hf_hub_download(
REPO_NAME,
'pexels-cottonbro-studio-6649832-960x506-25fps.mp4',
local_dir='videos')
inversed_model_dict = dict()
for k, v in model_dict.items():
inversed_model_dict[v] = k
to_tensor = T.PILToTensor()
blur = T.GaussianBlur(kernel_size=(9, 9), sigma=(18, 18))
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class ProcessingState(Enum):
NULL = 0
FIRST_IMG = 1
KEY_IMGS = 2
MAX_KEYFRAME = float(os.environ.get('MAX_KEYFRAME', 8))
class GlobalState:
def __init__(self):
self.sd_model = None
self.ddim_v_sampler = None
self.detector_type = None
self.detector = None
self.controller = None
self.processing_state = ProcessingState.NULL
flow_model = GMFlow(
feature_channels=128,
num_scales=1,
upsample_factor=8,
num_head=1,
attention_type='swin',
ffn_dim_expansion=4,
num_transformer_layers=6,
).to(device)
checkpoint = torch.load('models/gmflow_sintel-0c07dcb3.pth',
map_location=lambda storage, loc: storage)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
flow_model.load_state_dict(weights, strict=False)
flow_model.eval()
self.flow_model = flow_model
def update_controller(self, inner_strength, mask_period, cross_period,
ada_period, warp_period):
self.controller = AttentionControl(inner_strength, mask_period,
cross_period, ada_period,
warp_period)
def update_sd_model(self, sd_model, control_type):
if sd_model == self.sd_model:
return
self.sd_model = sd_model
model = create_model('./ControlNet/models/cldm_v15.yaml').cpu()
if control_type == 'HED':
model.load_state_dict(
load_state_dict(huggingface_hub.hf_hub_download(
'lllyasviel/ControlNet', './models/control_sd15_hed.pth'),
location=device))
elif control_type == 'canny':
model.load_state_dict(
load_state_dict(huggingface_hub.hf_hub_download(
'lllyasviel/ControlNet', 'models/control_sd15_canny.pth'),
location=device))
elif control_type == 'depth':
model.load_state_dict(
load_state_dict(huggingface_hub.hf_hub_download(
'lllyasviel/ControlNet', 'models/control_sd15_depth.pth'),
location=device))
model.to(device)
sd_model_path = model_dict[sd_model]
if len(sd_model_path) > 0:
repo_name = REPO_NAME
# check if sd_model is repo_id/name otherwise use global REPO_NAME
if sd_model.count('/') == 1:
repo_name = sd_model
model_ext = os.path.splitext(sd_model_path)[1]
downloaded_model = huggingface_hub.hf_hub_download(
repo_name, sd_model_path)
if model_ext == '.safetensors':
model.load_state_dict(load_file(downloaded_model),
strict=False)
elif model_ext == '.ckpt' or model_ext == '.pth':
model.load_state_dict(
torch.load(downloaded_model)['state_dict'], strict=False)
try:
model.first_stage_model.load_state_dict(torch.load(
huggingface_hub.hf_hub_download(
'stabilityai/sd-vae-ft-mse-original',
'vae-ft-mse-840000-ema-pruned.ckpt'))['state_dict'],
strict=False)
except Exception:
print('Warning: We suggest you download the fine-tuned VAE',
'otherwise the generation quality will be degraded')
self.ddim_v_sampler = DDIMVSampler(model)
def clear_sd_model(self):
self.sd_model = None
self.ddim_v_sampler = None
if device == 'cuda':
torch.cuda.empty_cache()
def update_detector(self, control_type, canny_low=100, canny_high=200):
if self.detector_type == control_type:
return
if control_type == 'HED':
self.detector = HEDdetector()
elif control_type == 'canny':
canny_detector = CannyDetector()
low_threshold = canny_low
high_threshold = canny_high
def apply_canny(x):
return canny_detector(x, low_threshold, high_threshold)
self.detector = apply_canny
elif control_type == 'depth':
midas = MidasDetector()
def apply_midas(x):
detected_map, _ = midas(x)
return detected_map
self.detector = apply_midas
global_state = GlobalState()
global_video_path = None
video_frame_count = None
def create_cfg(input_path, prompt, image_resolution, control_strength,
color_preserve, left_crop, right_crop, top_crop, bottom_crop,
control_type, low_threshold, high_threshold, ddim_steps, scale,
seed, sd_model, a_prompt, n_prompt, interval, keyframe_count,
x0_strength, use_constraints, cross_start, cross_end,
style_update_freq, warp_start, warp_end, mask_start, mask_end,
ada_start, ada_end, mask_strength, inner_strength,
smooth_boundary):
use_warp = 'shape-aware fusion' in use_constraints
use_mask = 'pixel-aware fusion' in use_constraints
use_ada = 'color-aware AdaIN' in use_constraints
if not use_warp:
warp_start = 1
warp_end = 0
if not use_mask:
mask_start = 1
mask_end = 0
if not use_ada:
ada_start = 1
ada_end = 0
input_name = os.path.split(input_path)[-1].split('.')[0]
frame_count = 2 + keyframe_count * interval
cfg = RerenderConfig()
cfg.create_from_parameters(
input_path,
os.path.join('result', input_name, 'blend.mp4'),
prompt,
a_prompt=a_prompt,
n_prompt=n_prompt,
frame_count=frame_count,
interval=interval,
crop=[left_crop, right_crop, top_crop, bottom_crop],
sd_model=sd_model,
ddim_steps=ddim_steps,
scale=scale,
control_type=control_type,
control_strength=control_strength,
canny_low=low_threshold,
canny_high=high_threshold,
seed=seed,
image_resolution=image_resolution,
x0_strength=x0_strength,
style_update_freq=style_update_freq,
cross_period=(cross_start, cross_end),
warp_period=(warp_start, warp_end),
mask_period=(mask_start, mask_end),
ada_period=(ada_start, ada_end),
mask_strength=mask_strength,
inner_strength=inner_strength,
smooth_boundary=smooth_boundary,
color_preserve=color_preserve)
return cfg
def cfg_to_input(filename):
cfg = RerenderConfig()
cfg.create_from_path(filename)
keyframe_count = (cfg.frame_count - 2) // cfg.interval
use_constraints = [
'shape-aware fusion', 'pixel-aware fusion', 'color-aware AdaIN'
]
sd_model = inversed_model_dict.get(cfg.sd_model, 'Stable Diffusion 1.5')
args = [
cfg.input_path, cfg.prompt, cfg.image_resolution, cfg.control_strength,
cfg.color_preserve, *cfg.crop, cfg.control_type, cfg.canny_low,
cfg.canny_high, cfg.ddim_steps, cfg.scale, cfg.seed, sd_model,
cfg.a_prompt, cfg.n_prompt, cfg.interval, keyframe_count,
cfg.x0_strength, use_constraints, *cfg.cross_period,
cfg.style_update_freq, *cfg.warp_period, *cfg.mask_period,
*cfg.ada_period, cfg.mask_strength, cfg.inner_strength,
cfg.smooth_boundary
]
return args
def setup_color_correction(image):
correction_target = cv2.cvtColor(np.asarray(image.copy()),
cv2.COLOR_RGB2LAB)
return correction_target
def apply_color_correction(correction, original_image):
image = Image.fromarray(
cv2.cvtColor(
exposure.match_histograms(cv2.cvtColor(np.asarray(original_image),
cv2.COLOR_RGB2LAB),
correction,
channel_axis=2),
cv2.COLOR_LAB2RGB).astype('uint8'))
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
return image
@torch.no_grad()
def process(*args):
first_frame = process1(*args)
keypath = process2(*args)
return first_frame, keypath
@torch.no_grad()
def process0(*args):
global global_video_path
global_video_path = args[0]
return process(*args[1:])
@torch.no_grad()
def process1(*args):
global global_video_path
cfg = create_cfg(global_video_path, *args)
global global_state
global_state.update_sd_model(cfg.sd_model, cfg.control_type)
global_state.update_controller(cfg.inner_strength, cfg.mask_period,
cfg.cross_period, cfg.ada_period,
cfg.warp_period)
global_state.update_detector(cfg.control_type, cfg.canny_low,
cfg.canny_high)
global_state.processing_state = ProcessingState.FIRST_IMG
prepare_frames(cfg.input_path, cfg.input_dir, cfg.image_resolution,
cfg.crop)
ddim_v_sampler = global_state.ddim_v_sampler
model = ddim_v_sampler.model
detector = global_state.detector
controller = global_state.controller
model.control_scales = [cfg.control_strength] * 13
model.to(device)
num_samples = 1
eta = 0.0
imgs = sorted(os.listdir(cfg.input_dir))
imgs = [os.path.join(cfg.input_dir, img) for img in imgs]
model.cond_stage_model.device = device
with torch.no_grad():
frame = cv2.imread(imgs[0])
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = HWC3(frame)
H, W, C = img.shape
img_ = numpy2tensor(img)
def generate_first_img(img_, strength):
encoder_posterior = model.encode_first_stage(img_.to(device))
x0 = model.get_first_stage_encoding(encoder_posterior).detach()
detected_map = detector(img)
detected_map = HWC3(detected_map)
control = torch.from_numpy(
detected_map.copy()).float().to(device) / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
cond = {
'c_concat': [control],
'c_crossattn': [
model.get_learned_conditioning(
[cfg.prompt + ', ' + cfg.a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[model.get_learned_conditioning([cfg.n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
controller.set_task('initfirst')
seed_everything(cfg.seed)
samples, _ = ddim_v_sampler.sample(
cfg.ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=cfg.scale,
unconditional_conditioning=un_cond,
controller=controller,
x0=x0,
strength=strength)
x_samples = model.decode_first_stage(samples)
x_samples_np = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
return x_samples, x_samples_np
# When not preserve color, draw a different frame at first and use its
# color to redraw the first frame.
if not cfg.color_preserve:
first_strength = -1
else:
first_strength = 1 - cfg.x0_strength
x_samples, x_samples_np = generate_first_img(img_, first_strength)
if not cfg.color_preserve:
color_corrections = setup_color_correction(
Image.fromarray(x_samples_np[0]))
global_state.color_corrections = color_corrections
img_ = apply_color_correction(color_corrections,
Image.fromarray(img))
img_ = to_tensor(img_).unsqueeze(0)[:, :3] / 127.5 - 1
x_samples, x_samples_np = generate_first_img(
img_, 1 - cfg.x0_strength)
global_state.first_result = x_samples
global_state.first_img = img
Image.fromarray(x_samples_np[0]).save(
os.path.join(cfg.first_dir, 'first.jpg'))
return x_samples_np[0]
@torch.no_grad()
def process2(*args):
global global_state
global global_video_path
if global_state.processing_state != ProcessingState.FIRST_IMG:
raise gr.Error('Please generate the first key image before generating'
' all key images')
cfg = create_cfg(global_video_path, *args)
global_state.update_sd_model(cfg.sd_model, cfg.control_type)
global_state.update_detector(cfg.control_type, cfg.canny_low,
cfg.canny_high)
global_state.processing_state = ProcessingState.KEY_IMGS
# reset key dir
shutil.rmtree(cfg.key_dir)
os.makedirs(cfg.key_dir, exist_ok=True)
ddim_v_sampler = global_state.ddim_v_sampler
model = ddim_v_sampler.model
detector = global_state.detector
controller = global_state.controller
flow_model = global_state.flow_model
model.control_scales = [cfg.control_strength] * 13
num_samples = 1
eta = 0.0
firstx0 = True
pixelfusion = cfg.use_mask
imgs = sorted(os.listdir(cfg.input_dir))
imgs = [os.path.join(cfg.input_dir, img) for img in imgs]
first_result = global_state.first_result
first_img = global_state.first_img
pre_result = first_result
pre_img = first_img
for i in range(0, cfg.frame_count - 1, cfg.interval):
cid = i + 1
frame = cv2.imread(imgs[i + 1])
print(cid)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = HWC3(frame)
H, W, C = img.shape
if cfg.color_preserve or global_state.color_corrections is None:
img_ = numpy2tensor(img)
else:
img_ = apply_color_correction(global_state.color_corrections,
Image.fromarray(img))
img_ = to_tensor(img_).unsqueeze(0)[:, :3] / 127.5 - 1
encoder_posterior = model.encode_first_stage(img_.to(device))
x0 = model.get_first_stage_encoding(encoder_posterior).detach()
detected_map = detector(img)
detected_map = HWC3(detected_map)
control = torch.from_numpy(
detected_map.copy()).float().to(device) / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
cond = {
'c_concat': [control],
'c_crossattn': [
model.get_learned_conditioning(
[cfg.prompt + ', ' + cfg.a_prompt] * num_samples)
]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[model.get_learned_conditioning([cfg.n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
cond['c_concat'] = [control]
un_cond['c_concat'] = [control]
image1 = torch.from_numpy(pre_img).permute(2, 0, 1).float()
image2 = torch.from_numpy(img).permute(2, 0, 1).float()
warped_pre, bwd_occ_pre, bwd_flow_pre = get_warped_and_mask(
flow_model, image1, image2, pre_result, False)
blend_mask_pre = blur(
F.max_pool2d(bwd_occ_pre, kernel_size=9, stride=1, padding=4))
blend_mask_pre = torch.clamp(blend_mask_pre + bwd_occ_pre, 0, 1)
image1 = torch.from_numpy(first_img).permute(2, 0, 1).float()
warped_0, bwd_occ_0, bwd_flow_0 = get_warped_and_mask(
flow_model, image1, image2, first_result, False)
blend_mask_0 = blur(
F.max_pool2d(bwd_occ_0, kernel_size=9, stride=1, padding=4))
blend_mask_0 = torch.clamp(blend_mask_0 + bwd_occ_0, 0, 1)
if firstx0:
mask = 1 - F.max_pool2d(blend_mask_0, kernel_size=8)
controller.set_warp(
F.interpolate(bwd_flow_0 / 8.0,
scale_factor=1. / 8,
mode='bilinear'), mask)
else:
mask = 1 - F.max_pool2d(blend_mask_pre, kernel_size=8)
controller.set_warp(
F.interpolate(bwd_flow_pre / 8.0,
scale_factor=1. / 8,
mode='bilinear'), mask)
controller.set_task('keepx0, keepstyle')
seed_everything(cfg.seed)
samples, intermediates = ddim_v_sampler.sample(
cfg.ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=cfg.scale,
unconditional_conditioning=un_cond,
controller=controller,
x0=x0,
strength=1 - cfg.x0_strength)
direct_result = model.decode_first_stage(samples)
if not pixelfusion:
pre_result = direct_result
pre_img = img
viz = (
einops.rearrange(direct_result, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
else:
blend_results = (1 - blend_mask_pre
) * warped_pre + blend_mask_pre * direct_result
blend_results = (
1 - blend_mask_0) * warped_0 + blend_mask_0 * blend_results
bwd_occ = 1 - torch.clamp(1 - bwd_occ_pre + 1 - bwd_occ_0, 0, 1)
blend_mask = blur(
F.max_pool2d(bwd_occ, kernel_size=9, stride=1, padding=4))
blend_mask = 1 - torch.clamp(blend_mask + bwd_occ, 0, 1)
encoder_posterior = model.encode_first_stage(blend_results)
xtrg = model.get_first_stage_encoding(
encoder_posterior).detach() # * mask
blend_results_rec = model.decode_first_stage(xtrg)
encoder_posterior = model.encode_first_stage(blend_results_rec)
xtrg_rec = model.get_first_stage_encoding(
encoder_posterior).detach()
xtrg_ = (xtrg + 1 * (xtrg - xtrg_rec)) # * mask
blend_results_rec_new = model.decode_first_stage(xtrg_)
tmp = (abs(blend_results_rec_new - blend_results).mean(
dim=1, keepdims=True) > 0.25).float()
mask_x = F.max_pool2d((F.interpolate(tmp,
scale_factor=1 / 8.,
mode='bilinear') > 0).float(),
kernel_size=3,
stride=1,
padding=1)
mask = (1 - F.max_pool2d(1 - blend_mask, kernel_size=8)
) # * (1-mask_x)
if cfg.smooth_boundary:
noise_rescale = find_flat_region(mask)
else:
noise_rescale = torch.ones_like(mask)
masks = []
for i in range(cfg.ddim_steps):
if i <= cfg.ddim_steps * cfg.mask_period[
0] or i >= cfg.ddim_steps * cfg.mask_period[1]:
masks += [None]
else:
masks += [mask * cfg.mask_strength]
# mask 3
# xtrg = ((1-mask_x) *
# (xtrg + xtrg - xtrg_rec) + mask_x * samples) * mask
# mask 2
# xtrg = (xtrg + 1 * (xtrg - xtrg_rec)) * mask
xtrg = (xtrg + (1 - mask_x) * (xtrg - xtrg_rec)) * mask # mask 1
tasks = 'keepstyle, keepx0'
if not firstx0:
tasks += ', updatex0'
if i % cfg.style_update_freq == 0:
tasks += ', updatestyle'
controller.set_task(tasks, 1.0)
seed_everything(cfg.seed)
samples, _ = ddim_v_sampler.sample(
cfg.ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=cfg.scale,
unconditional_conditioning=un_cond,
controller=controller,
x0=x0,
strength=1 - cfg.x0_strength,
xtrg=xtrg,
mask=masks,
noise_rescale=noise_rescale)
x_samples = model.decode_first_stage(samples)
pre_result = x_samples
pre_img = img
viz = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
Image.fromarray(viz[0]).save(
os.path.join(cfg.key_dir, f'{cid:04d}.png'))
key_video_path = os.path.join(cfg.work_dir, 'key.mp4')
fps = get_fps(cfg.input_path)
fps //= cfg.interval
frame_to_video(key_video_path, cfg.key_dir, fps, False)
return key_video_path
DESCRIPTION = '''
## Rerender A Video
### This space provides the function of key frame translation. Full code for full video translation will be released upon the publication of the paper.
### To avoid overload, we set limitations to the **maximum frame number** (8) and the maximum frame resolution (512x768).
### The running time of a video of size 512x640 is about 1 minute per keyframe under T4 GPU.
### How to use:
1. **Run 1st Key Frame**: only translate the first frame, so you can adjust the prompts/models/parameters to find your ideal output appearance before run the whole video.
2. **Run Key Frames**: translate all the key frames based on the settings of the first frame
3. **Run All**: **Run 1st Key Frame** and **Run Key Frames**
4. **Run Propagation**: propogate the key frames to other frames for full video translation. This part will be released upon the publication of the paper.
### Tips:
1. This method cannot handle large or quick motions where the optical flow is hard to estimate. **Videos with stable motions are preferred**.
2. Pixel-aware fusion may not work for large or quick motions.
3. Try different color-aware AdaIN settings and even unuse it to avoid color jittering.
4. `revAnimated_v11` model for non-photorealstic style, `realisticVisionV20_v20` model for photorealstic style.
5. To use your own SD/LoRA model, you may clone the space and specify your model with [sd_model_cfg.py](https://huggingface.co/spaces/Anonymous-sub/Rerender/blob/main/sd_model_cfg.py).
6. This method is based on the original SD model. You may need to [convert](https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py) Diffuser/Automatic1111 models to the original one.
**This code is for research purpose and non-commercial use only.**
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/Anonymous-sub/Rerender?duplicate=true) for no queue on your own hardware.
'''
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
input_path = gr.Video(label='Input Video',
source='upload',
format='mp4',
visible=True)
prompt = gr.Textbox(label='Prompt')
seed = gr.Slider(label='Seed',
minimum=0,
maximum=2147483647,
step=1,
value=0,
randomize=True)
run_button = gr.Button(value='Run All')
with gr.Row():
run_button1 = gr.Button(value='Run 1st Key Frame')
run_button2 = gr.Button(value='Run Key Frames')
run_button3 = gr.Button(value='Run Propagation')
with gr.Accordion('Advanced options for the 1st frame translation',
open=False):
image_resolution = gr.Slider(
label='Frame rsolution',
minimum=256,
maximum=512,
value=512,
step=64,
info='To avoid overload, maximum 512')
control_strength = gr.Slider(label='ControNet strength',
minimum=0.0,
maximum=2.0,
value=1.0,
step=0.01)
x0_strength = gr.Slider(
label='Denoising strength',
minimum=0.00,
maximum=1.05,
value=0.75,
step=0.05,
info=('0: fully recover the input.'
'1.05: fully rerender the input.'))
color_preserve = gr.Checkbox(
label='Preserve color',
value=True,
info='Keep the color of the input video')
with gr.Row():
left_crop = gr.Slider(label='Left crop length',
minimum=0,
maximum=512,
value=0,
step=1)
right_crop = gr.Slider(label='Right crop length',
minimum=0,
maximum=512,
value=0,
step=1)
with gr.Row():
top_crop = gr.Slider(label='Top crop length',
minimum=0,
maximum=512,
value=0,
step=1)
bottom_crop = gr.Slider(label='Bottom crop length',
minimum=0,
maximum=512,
value=0,
step=1)
with gr.Row():
control_type = gr.Dropdown(['HED', 'canny', 'depth'],
label='Control type',
value='HED')
low_threshold = gr.Slider(label='Canny low threshold',
minimum=1,
maximum=255,
value=100,
step=1)
high_threshold = gr.Slider(label='Canny high threshold',
minimum=1,
maximum=255,
value=200,
step=1)
ddim_steps = gr.Slider(label='Steps',
minimum=1,
maximum=20,
value=20,
step=1,
info='To avoid overload, maximum 20')
scale = gr.Slider(label='CFG scale',
minimum=0.1,
maximum=30.0,
value=7.5,
step=0.1)
sd_model_list = list(model_dict.keys())
sd_model = gr.Dropdown(sd_model_list,
label='Base model',
value='Stable Diffusion 1.5')
a_prompt = gr.Textbox(label='Added prompt',
value='best quality, extremely detailed')
n_prompt = gr.Textbox(
label='Negative prompt',
value=('longbody, lowres, bad anatomy, bad hands, '
'missing fingers, extra digit, fewer digits, '
'cropped, worst quality, low quality'))
with gr.Accordion('Advanced options for the key fame translation',
open=False):
interval = gr.Slider(
label='Key frame frequency (K)',
minimum=1,
maximum=MAX_KEYFRAME,
value=1,
step=1,
info='Uniformly sample the key frames every K frames')
keyframe_count = gr.Slider(
label='Number of key frames',
minimum=1,
maximum=MAX_KEYFRAME,
value=1,
step=1,
info='To avoid overload, maximum 8 key frames')
use_constraints = gr.CheckboxGroup(
[
'shape-aware fusion', 'pixel-aware fusion',
'color-aware AdaIN'
],
label='Select the cross-frame contraints to be used',
value=[
'shape-aware fusion', 'pixel-aware fusion',
'color-aware AdaIN'
]),
with gr.Row():
cross_start = gr.Slider(
label='Cross-frame attention start',
minimum=0,
maximum=1,
value=0,
step=0.05)
cross_end = gr.Slider(label='Cross-frame attention end',
minimum=0,
maximum=1,
value=1,
step=0.05)
style_update_freq = gr.Slider(
label='Cross-frame attention update frequency',
minimum=1,
maximum=100,
value=1,
step=1,
info=('Update the key and value for '
'cross-frame attention every N key frames (recommend N*K>=10)'
))
with gr.Row():
warp_start = gr.Slider(label='Shape-aware fusion start',
minimum=0,
maximum=1,
value=0,
step=0.05)
warp_end = gr.Slider(label='Shape-aware fusion end',
minimum=0,
maximum=1,
value=0.1,
step=0.05)
with gr.Row():
mask_start = gr.Slider(label='Pixel-aware fusion start',
minimum=0,
maximum=1,
value=0.5,
step=0.05)
mask_end = gr.Slider(label='Pixel-aware fusion end',
minimum=0,
maximum=1,
value=0.8,
step=0.05)
with gr.Row():
ada_start = gr.Slider(label='Color-aware AdaIN start',
minimum=0,
maximum=1,
value=0.8,
step=0.05)
ada_end = gr.Slider(label='Color-aware AdaIN end',
minimum=0,
maximum=1,
value=1,
step=0.05)
mask_strength = gr.Slider(label='Pixel-aware fusion stength',
minimum=0,
maximum=1,
value=0.5,
step=0.01)
inner_strength = gr.Slider(
label='Pixel-aware fusion detail level',
minimum=0.5,
maximum=1,
value=0.9,
step=0.01,
info='Use a low value to prevent artifacts')
smooth_boundary = gr.Checkbox(
label='Smooth fusion boundary',
value=True,
info='Select to prevent artifacts at boundary')
with gr.Accordion('Example configs', open=True):
config_dir = 'config'
config_list = os.listdir(config_dir)
args_list = []
for config in config_list:
try:
config_path = os.path.join(config_dir, config)
args = cfg_to_input(config_path)
args_list.append(args)
except FileNotFoundError:
# The video file does not exist, skipped
pass
ips = [
prompt, image_resolution, control_strength, color_preserve,
left_crop, right_crop, top_crop, bottom_crop, control_type,
low_threshold, high_threshold, ddim_steps, scale, seed,
sd_model, a_prompt, n_prompt, interval, keyframe_count,
x0_strength, use_constraints[0], cross_start, cross_end,
style_update_freq, warp_start, warp_end, mask_start,
mask_end, ada_start, ada_end, mask_strength,
inner_strength, smooth_boundary
]
with gr.Column():
result_image = gr.Image(label='Output first frame',
type='numpy',
interactive=False)
result_keyframe = gr.Video(label='Output key frame video',
format='mp4',
interactive=False)
with gr.Row():
gr.Examples(examples=args_list,
inputs=[input_path, *ips],
fn=process0,
outputs=[result_image, result_keyframe],
cache_examples=True)
def input_uploaded(path):
frame_count = get_frame_count(path)
if frame_count <= 2:
raise gr.Error('The input video is too short!'
'Please input another video.')
default_interval = min(10, frame_count - 2)
max_keyframe = min((frame_count - 2) // default_interval, MAX_KEYFRAME)
global video_frame_count
video_frame_count = frame_count
global global_video_path
global_video_path = path
return gr.Slider.update(value=default_interval,
maximum=frame_count - 2), gr.Slider.update(
value=max_keyframe, maximum=max_keyframe)
def input_changed(path):
frame_count = get_frame_count(path)
if frame_count <= 2:
return gr.Slider.update(maximum=1), gr.Slider.update(maximum=1)
default_interval = min(10, frame_count - 2)
max_keyframe = min((frame_count - 2) // default_interval, MAX_KEYFRAME)
global video_frame_count
video_frame_count = frame_count
global global_video_path
global_video_path = path
return gr.Slider.update(value=default_interval,
maximum=frame_count - 2), \
gr.Slider.update(maximum=max_keyframe)
def interval_changed(interval):
global video_frame_count
if video_frame_count is None:
return gr.Slider.update()
max_keyframe = min((video_frame_count - 2) // interval, MAX_KEYFRAME)
return gr.Slider.update(value=max_keyframe, maximum=max_keyframe)
input_path.change(input_changed, input_path, [interval, keyframe_count])
input_path.upload(input_uploaded, input_path, [interval, keyframe_count])
interval.change(interval_changed, interval, keyframe_count)
run_button.click(fn=process,
inputs=ips,
outputs=[result_image, result_keyframe])
run_button1.click(fn=process1, inputs=ips, outputs=[result_image])
run_button2.click(fn=process2, inputs=ips, outputs=[result_keyframe])
def process3():
raise gr.Error(
"Coming Soon. Full code for full video translation will be "
"released upon the publication of the paper.")
run_button3.click(fn=process3, outputs=[result_keyframe])
block.queue(concurrency_count=1, max_size=20)
block.launch(server_name='0.0.0.0')