minigpt4.cpp / app.py
maknee's picture
upload
d322e37
raw
history blame
4.71 kB
import os
import sys
import ctypes
import pathlib
from typing import Optional, List
import enum
from pathlib import Path
import argparse
import gradio as gr
import minigpt4_library
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(repo_id='maknee/minigpt4-13b-ggml', filename='minigpt4-13B-f16.bin', repo_type='dataset')
llm_model_path = hf_hub_download(repo_id='maknee/ggml-vicuna-v0-quantized', filename='ggml-vicuna-13B-v0-q5_k.bin', repo_type='dataset')
title = """<h1 align="center">Demo of MiniGPT-4</h1>"""
description = """<h3>This is the demo of MiniGPT-4 with ggml (cpu only!). Upload your images and start chatting!</h3>"""
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a></div>"""
global minigpt4_chatbot
minigpt4_chatbot: minigpt4_library.MiniGPT4ChatBot
def user(message, history):
history = history or []
# Append the user's message to the conversation history
history.append([message, ""])
return "", history
def chat(history, limit: int = 1024, temp: float = 0.8, top_k: int = 40, top_p: float = 0.9, repeat_penalty: float = 1.1):
history = history or []
message = history[-1][0]
history[-1][1] = ""
for output in minigpt4_chatbot.generate(
message,
limit = int(limit),
temp = float(temp),
top_k = int(top_k),
top_p = float(top_p),
):
answer = output
history[-1][1] += answer
# stream the response
yield history, history
def clear_state(history, chat_message, image):
history = []
minigpt4_chatbot.reset_chat()
return history, gr.update(value=None, interactive=True), gr.update(placeholder='Upload image first', interactive=False), gr.update(value="Upload & Start Chat", interactive=True)
def upload_image(image, history):
if image is None:
return None, None, gr.update(interactive=True), history
history = []
minigpt4_chatbot.upload_image(image)
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), history
def start():
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
max_tokens = gr.Slider(1, 1024, label="Max Tokens", step=1, value=128)
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.05, value=0.8)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
top_k = gr.Slider(0, 100, label="Top K", step=1, value=40)
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
with gr.Column():
chatbot = gr.Chatbot(label='MiniGPT-4')
message = gr.Textbox(label='User', placeholder='Upload image first', interactive=False)
history = gr.State()
with gr.Row():
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
clear = gr.Button(value="Reset", variant="secondary").style(full_width=False)
# stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
clear.click(clear_state, inputs=[history, image, message], outputs=[history, image, message, upload_button], queue=False)
upload_button.click(upload_image, inputs=[image, history], outputs=[image, message, upload_button, history])
submit_click_event = submit.click(
fn=user, inputs=[message, history], outputs=[message, history], queue=True
).then(
fn=chat, inputs=[history, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, history], queue=True
)
message_submit_event = message.submit(
fn=user, inputs=[message, history], outputs=[message, history], queue=True
).then(
fn=chat, inputs=[history, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, history], queue=True
)
# stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, message_submit_event], queue=False)
demo.launch(enable_queue=True)
minigpt4_chatbot = minigpt4_library.MiniGPT4ChatBot(model_path, llm_model_path, verbosity=minigpt4_library.Verbosity.SILENT)
start()