File size: 8,166 Bytes
718967a 5d3e0a8 718967a 5d3e0a8 718967a 5d3e0a8 718967a 5d3e0a8 718967a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# https://huggingface.co/spaces/asigalov61/MIDI-Search
import os
import time as reqtime
import datetime
from pytz import timezone
from sentence_transformers import SentenceTransformer
from sentence_transformers import util
import numpy as np
from datasets import load_dataset
import gradio as gr
import copy
import random
import pickle
import zlib
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
#==========================================================================================================
def find_midi(title, artist):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('-' * 70)
print('Req title:', title)
print('Req artist:', artist)
print('-' * 70)
input_text = ''
if title != '':
input_text += title
if artist != '':
input_text += ' by ' + artist
print('Searching...')
query_embedding = model.encode([input_text])
# Compute cosine similarity between query and each sentence in the corpus
similarities = util.cos_sim(query_embedding, corpus_embeddings)
top_ten_matches_idxs = np.argsort(-similarities)[0][:10].tolist()
# Find the index of the most similar sentence
closest_index = np.argmax(similarities)
closest_index_match_ratio = max(similarities[0]).tolist()
best_corpus_match = all_MIDI_files_names[closest_index]
top_ten_matches = ''
for t in top_ten_matches_idxs:
top_ten_matches += str(all_MIDI_files_names[t][0]).title() + '\n'
print('Done!')
print('=' * 70)
print('Match corpus index', closest_index)
print('Match corpus ratio', closest_index_match_ratio)
print('=' * 70)
print('Done!')
print('=' * 70)
song_artist = best_corpus_match[0]
song_artist_title = str(song_artist).title()
zlib_file_name = best_corpus_match[1]
print('Fetching MIDI score...')
with open(zlib_file_name, 'rb') as f:
compressed_data = f.read()
# Decompress the data
decompressed_data = zlib.decompress(compressed_data)
# Convert the bytes back to a list using pickle
scores_data = pickle.loads(decompressed_data)
fnames = [f[0] for f in scores_data]
fnameidx = fnames.index(song_artist)
MIDI_score_data = scores_data[fnameidx][1]
print('Rendering results...')
print('=' * 70)
print('MIDi Title:', song_artist_title)
print('Sample INTs', MIDI_score_data[:12])
print('=' * 70)
if len(MIDI_score_data) != 0:
song = MIDI_score_data
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 512:
dur = (ss-256) * 16
if 512 <= ss <= 640:
patch = (ss-512)
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
if 640 < ss < 768:
ptc = (ss-640)
if 768 < ss < 896:
vel = (ss - 768)
song_f.append(['note', time, dur, channel, ptc, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
print('=' * 70)
#===============================================================================
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'Los Angeles MIDI Dataset Search',
output_file_name = song_artist_title,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = song_artist_title + '.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(song_artist_title)
output_midi_summary = str(top_ten_matches)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi_title, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
#==========================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
print('Loading files list...')
all_MIDI_files_names = TMIDIX.Tegridy_Any_Pickle_File_Reader('LAKH_all_MIDI_files_names')
print('=' * 70)
print('Loading MIDI corpus embeddings...')
corpus_embeddings = np.load('MIDI_corpus_embeddings_all-MiniLM-L6-v2.npz')['data']
print('Done!')
print('=' * 70)
print('Loading Sentence Transformer model...')
model = SentenceTransformer('all-MiniLM-L6-v2')
print('Done!')
print('=' * 70)
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Search</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Search and explore 179k+ MIDI titles with sentence transformer</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.MIDI-Search&style=flat)\n\n")
gr.Markdown("# Enter any desired title, artist or both\n\n")
title = gr.Textbox(label="Song Title", value="Family Guy")
artist = gr.Textbox(label="Song Artist", value="TV Themes")
submit = gr.Button(value='Search')
gr.ClearButton(components=[title, artist])
gr.Markdown("# Search results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Top ten MIDI matches")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = submit.click(find_midi, [title, artist],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot ])
app.launch() |