import gradio as gr import requests import os API_URL = "https://api-inference.huggingface.co/models/openai-gpt" API_TOKEN = os.environ.get("API_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} # Function to translate code using the Hugging Face model API # Function to translate code using the Hugging Face model API # Function to translate code using the Hugging Face model API def translate_code(input_text, source_lang, target_lang): payload = { "inputs": f"convert the below {source_lang} code to {target_lang} code: {input_text}" } response = requests.post(API_URL, headers=headers, json=payload) response_data = response.json() # Store the entire response for inspection print("API Response:", response_data) # Print the response for inspection # Extract the translated code from the response translated_code = "No translation available" # Default value if response_data: if isinstance(response_data, list) and len(response_data) > 0: translated_code = response_data[0].get("generated_text", "").strip() return translated_code # Interface for the Gradio app iface = gr.Interface( fn=translate_code, inputs=[ gr.inputs.Textbox(label="Enter code to translate"), gr.inputs.Textbox(label="Source Language (e.g., C++,python,java...)"), gr.inputs.Textbox(label="Target Language (e.g., C++,python,java...)") ], outputs=gr.outputs.Textbox(label="Translated Code"), title="Code Translator", description="Translate code snippets between programming languages" ) # Launch the Gradio app iface.launch()