Anujgr8 commited on
Commit
7e5968b
1 Parent(s): 82c68f6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import soundfile as sf
2
+ import torch
3
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor,Wav2Vec2ProcessorWithLM
4
+ import gradio as gr
5
+ import sox
6
+ import subprocess
7
+ import os
8
+
9
+
10
+ def read_file_and_process(wav_file):
11
+ filename = wav_file.split('.')[0]
12
+ filename_16k = filename + "16k.wav"
13
+ resampler(wav_file, filename_16k)
14
+ speech, _ = sf.read(filename_16k)
15
+ inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
16
+
17
+ return inputs
18
+
19
+
20
+ def resampler(input_file_path, output_file_path):
21
+ command = (
22
+ f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn "
23
+ f"{output_file_path}"
24
+ )
25
+ subprocess.call(command, shell=True)
26
+
27
+
28
+ def parse_transcription_with_lm(logits):
29
+ result = processor_with_LM.batch_decode(logits.cpu().numpy())
30
+ text = result.text
31
+ transcription = text[0].replace('<s>','')
32
+ return transcription
33
+
34
+ def parse_transcription(logits):
35
+ predicted_ids = torch.argmax(logits, dim=-1)
36
+ transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
37
+ return transcription
38
+
39
+ def parse(wav_file, applyLM):
40
+ input_values = read_file_and_process(wav_file)
41
+ with torch.no_grad():
42
+ logits = model(**input_values).logits
43
+
44
+ if applyLM:
45
+ return parse_transcription_with_lm(logits)
46
+ else:
47
+ return parse_transcription(logits)
48
+
49
+ access_token = os.getenv("ACCESS_TOKEN")
50
+ model_id = "Anujgr8/wav2vec2-indic-hindi-codeswitch-anuj"
51
+ processor = Wav2Vec2Processor.from_pretrained(model_id,token=access_token)
52
+ processor_with_LM = Wav2Vec2ProcessorWithLM.from_pretrained(model_id,token=access_token)
53
+ model = Wav2Vec2ForCTC.from_pretrained(model_id,token=access_token)
54
+
55
+
56
+ input_ = gr.Audio(source="microphone", type="filepath")
57
+ txtbox = gr.Textbox(
58
+ label="Output from model will appear here:",
59
+ lines=5
60
+ )
61
+ chkbox = gr.Checkbox(label="Apply LM", value=False)
62
+
63
+
64
+ gr.Interface(parse, inputs = [input_, chkbox], outputs=txtbox,
65
+ streaming=True, interactive=True,
66
+ analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);