Spaces:
Runtime error
Runtime error
Anupam251272
commited on
Commit
β’
f95f251
1
Parent(s):
f747521
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,172 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
class T4OptimizedStorylineGenerator:
|
8 |
def __init__(self):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def generate_story_text(self, topic, plot_points, max_length=200):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def generate_scene_images(self, scene_prompts, num_images=3):
|
|
|
|
|
|
|
48 |
scene_images = []
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
return scene_images
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def generate_visual_storyline(self, topic, plot_points, scene_prompts):
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def create_gradio_interface():
|
|
|
|
|
|
|
60 |
generator = T4OptimizedStorylineGenerator()
|
61 |
|
62 |
def storyline_wrapper(topic, plot_points, scene_prompts):
|
|
|
63 |
plot_points_list = [p.strip() for p in plot_points.split(',')]
|
64 |
scene_prompts_list = [p.strip() for p in scene_prompts.split(',')]
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
interface = gr.Interface(
|
68 |
fn=storyline_wrapper,
|
69 |
inputs=[
|
70 |
-
gr.Textbox(label="Story Topic"),
|
71 |
gr.Textbox(label="Plot Points", placeholder="Enter forest, Meet creatures, Find treasure"),
|
72 |
gr.Textbox(label="Scene Prompts", placeholder="Misty enchanted forest, Magical creatures gathering, Hidden treasure cave")
|
73 |
],
|
@@ -75,11 +174,32 @@ def create_gradio_interface():
|
|
75 |
gr.Textbox(label="Generated Story"),
|
76 |
gr.Gallery(label="Scene Images")
|
77 |
],
|
78 |
-
title="T4-Optimized AI Storyline Generator"
|
|
|
79 |
)
|
80 |
|
81 |
return interface
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
if __name__ == "__main__":
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
import logging
|
4 |
+
import traceback
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
from diffusers import StableDiffusionPipeline
|
7 |
+
from PIL import Image, ImageDraw
|
8 |
+
|
9 |
+
# Logging Configuration
|
10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
|
13 |
class T4OptimizedStorylineGenerator:
|
14 |
def __init__(self):
|
15 |
+
"""
|
16 |
+
Optimized initialization for both CPU and GPU environments
|
17 |
+
"""
|
18 |
+
try:
|
19 |
+
# Model Selection
|
20 |
+
text_model_name = "distilgpt2" # Lighter GPT-2 model
|
21 |
+
image_model_name = "runwayml/stable-diffusion-v1-5" # Stable Diffusion model
|
22 |
+
|
23 |
+
# Device Configuration
|
24 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
self.dtype = torch.float16 if self.device == "cuda" else torch.float32
|
26 |
+
|
27 |
+
logger.info(f"π₯οΈ Device: {self.device}")
|
28 |
+
logger.info(f"π Precision: {self.dtype}")
|
29 |
+
|
30 |
+
# Text Generation Model
|
31 |
+
logger.info("π Loading Text Model")
|
32 |
+
self.tokenizer = AutoTokenizer.from_pretrained(text_model_name)
|
33 |
+
self.text_model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
text_model_name,
|
35 |
+
torch_dtype=self.dtype
|
36 |
+
).to(self.device) # Removed device_map to avoid accelerate dependency for CPU
|
37 |
+
|
38 |
+
# Image Generation Pipeline
|
39 |
+
logger.info("ποΈ Loading Image Generation Pipeline")
|
40 |
+
self.image_pipeline = StableDiffusionPipeline.from_pretrained(
|
41 |
+
image_model_name,
|
42 |
+
torch_dtype=self.dtype
|
43 |
+
)
|
44 |
+
|
45 |
+
if self.device == "cuda":
|
46 |
+
self.image_pipeline.enable_attention_slicing() # Memory optimization for GPU
|
47 |
+
self.image_pipeline = self.image_pipeline.to(self.device)
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"Initialization Error: {e}")
|
51 |
+
logger.error(traceback.format_exc())
|
52 |
+
raise
|
53 |
|
54 |
def generate_story_text(self, topic, plot_points, max_length=200):
|
55 |
+
"""
|
56 |
+
Optimized text generation for T4 with reduced complexity
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
prompt = f"Write a short story about {topic}. Scenes: {', '.join(plot_points)}"
|
60 |
+
|
61 |
+
# Tokenization with memory efficiency
|
62 |
+
inputs = self.tokenizer(
|
63 |
+
prompt,
|
64 |
+
return_tensors="pt",
|
65 |
+
truncation=True,
|
66 |
+
max_length=100
|
67 |
+
).to(self.device)
|
68 |
+
|
69 |
+
# Generation with reduced complexity
|
70 |
+
with torch.no_grad():
|
71 |
+
outputs = self.text_model.generate(
|
72 |
+
inputs.input_ids,
|
73 |
+
max_length=max_length,
|
74 |
+
num_return_sequences=1,
|
75 |
+
temperature=0.7,
|
76 |
+
top_k=50,
|
77 |
+
top_p=0.95
|
78 |
+
)
|
79 |
+
|
80 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Text Generation Error: {e}")
|
84 |
+
return f"Story generation failed: {e}"
|
85 |
|
86 |
def generate_scene_images(self, scene_prompts, num_images=3):
|
87 |
+
"""
|
88 |
+
T4-Optimized image generation with reduced steps and memory usage
|
89 |
+
"""
|
90 |
scene_images = []
|
91 |
+
|
92 |
+
try:
|
93 |
+
for prompt in scene_prompts[:num_images]:
|
94 |
+
with torch.inference_mode():
|
95 |
+
# Reduced inference steps for T4
|
96 |
+
image = self.image_pipeline(
|
97 |
+
prompt,
|
98 |
+
num_inference_steps=25, # Reduced from standard 50
|
99 |
+
guidance_scale=6.0,
|
100 |
+
height=512, # Standard resolution
|
101 |
+
width=512
|
102 |
+
).images[0]
|
103 |
+
|
104 |
+
scene_images.append(image)
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
logger.error(f"Image Generation Error: {e}")
|
108 |
+
# Fallback error image generation
|
109 |
+
scene_images.append(self._create_error_image())
|
110 |
+
|
111 |
return scene_images
|
112 |
|
113 |
+
def _create_error_image(self, size=(600, 400)):
|
114 |
+
"""
|
115 |
+
Create a standardized error visualization image
|
116 |
+
"""
|
117 |
+
img = Image.new('RGB', size, color=(200, 50, 50))
|
118 |
+
draw = ImageDraw.Draw(img)
|
119 |
+
|
120 |
+
# Simple error message
|
121 |
+
draw.text(
|
122 |
+
(50, 180),
|
123 |
+
"Image Generation Failed",
|
124 |
+
fill=(255, 255, 255)
|
125 |
+
)
|
126 |
+
|
127 |
+
return img
|
128 |
+
|
129 |
def generate_visual_storyline(self, topic, plot_points, scene_prompts):
|
130 |
+
"""
|
131 |
+
Comprehensive storyline generation with T4 optimization
|
132 |
+
"""
|
133 |
+
try:
|
134 |
+
# Generate story text
|
135 |
+
story_text = self.generate_story_text(topic, plot_points)
|
136 |
+
|
137 |
+
# Generate scene images with T4 constraints
|
138 |
+
scene_images = self.generate_scene_images(scene_prompts)
|
139 |
+
|
140 |
+
return story_text, scene_images
|
141 |
+
|
142 |
+
except Exception as e:
|
143 |
+
logger.error(f"Visual Storyline Generation Error: {e}")
|
144 |
+
error_text = f"Storyline generation failed: {e}"
|
145 |
+
error_image = self._create_error_image()
|
146 |
+
|
147 |
+
return error_text, [error_image]
|
148 |
|
149 |
def create_gradio_interface():
|
150 |
+
"""
|
151 |
+
Create a user-friendly Gradio interface with T4 optimizations
|
152 |
+
"""
|
153 |
generator = T4OptimizedStorylineGenerator()
|
154 |
|
155 |
def storyline_wrapper(topic, plot_points, scene_prompts):
|
156 |
+
# Split input strings
|
157 |
plot_points_list = [p.strip() for p in plot_points.split(',')]
|
158 |
scene_prompts_list = [p.strip() for p in scene_prompts.split(',')]
|
159 |
+
|
160 |
+
return generator.generate_visual_storyline(
|
161 |
+
topic,
|
162 |
+
plot_points_list,
|
163 |
+
scene_prompts_list
|
164 |
+
)
|
165 |
|
166 |
interface = gr.Interface(
|
167 |
fn=storyline_wrapper,
|
168 |
inputs=[
|
169 |
+
gr.Textbox(label="Story Topic", placeholder="A magical adventure"),
|
170 |
gr.Textbox(label="Plot Points", placeholder="Enter forest, Meet creatures, Find treasure"),
|
171 |
gr.Textbox(label="Scene Prompts", placeholder="Misty enchanted forest, Magical creatures gathering, Hidden treasure cave")
|
172 |
],
|
|
|
174 |
gr.Textbox(label="Generated Story"),
|
175 |
gr.Gallery(label="Scene Images")
|
176 |
],
|
177 |
+
title="π T4-Optimized AI Storyline Generator",
|
178 |
+
description="Create magical stories with AI-powered text and image generation"
|
179 |
)
|
180 |
|
181 |
return interface
|
182 |
|
183 |
+
def main():
|
184 |
+
"""Main execution with error handling"""
|
185 |
+
try:
|
186 |
+
# Launch Gradio interface
|
187 |
+
interface = create_gradio_interface()
|
188 |
+
interface.launch(debug=True)
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
logger.critical(f"Critical Failure: {e}")
|
192 |
+
logger.critical(traceback.format_exc())
|
193 |
+
|
194 |
if __name__ == "__main__":
|
195 |
+
main()
|
196 |
+
|
197 |
+
# T4 GPU Optimization Notes
|
198 |
+
"""
|
199 |
+
Optimization Strategies:
|
200 |
+
1. Use distilgpt2 (lighter model)
|
201 |
+
2. Reduced inference steps (25 vs 50)
|
202 |
+
3. float16 precision when using GPU
|
203 |
+
4. Attention slicing when using GPU
|
204 |
+
5. Smaller image resolutions
|
205 |
+
"""
|