Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
def top_k_top_p_filtering( | |
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1 | |
): | |
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (batch size, vocabulary size) | |
if top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
Make sure we keep at least min_tokens_to_keep per batch example in the output | |
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
""" | |
if top_k > 0: | |
top_k = min( | |
max(top_k, min_tokens_to_keep), logits.size(-1) | |
) # Safety check | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum( | |
F.softmax(sorted_logits, dim=-1), dim=-1 | |
) | |
# Remove tokens with cumulative probability above the threshold (token with 0 are kept) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
if min_tokens_to_keep > 1: | |
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) | |
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |
..., :-1 | |
].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
# scatter sorted tensors to original indexing | |
indices_to_remove = sorted_indices_to_remove.scatter( | |
1, sorted_indices, sorted_indices_to_remove | |
) | |
logits[indices_to_remove] = filter_value | |
return logits | |
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0): | |
# temperature: (`optional`) float | |
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. | |
# top_k: (`optional`) int | |
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50. | |
# top_p: (`optional`) float | |
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1. | |
# Temperature (higher temperature => more likely to sample low probability tokens) | |
if temperature != 1.0: | |
logits = logits / temperature | |
# Top-p/top-k filtering | |
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) | |
# Sample | |
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) | |
return token |