File size: 2,715 Bytes
fbe25e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import math
import pickle

import torch
from torch import distributed as dist
from torch.utils.data.sampler import Sampler


def get_rank():
    if not dist.is_available():
        return 0

    if not dist.is_initialized():
        return 0

    return dist.get_rank()


def synchronize():
    if not dist.is_available():
        return

    if not dist.is_initialized():
        return

    world_size = dist.get_world_size()

    if world_size == 1:
        return

    dist.barrier()


def get_world_size():
    if not dist.is_available():
        return 1

    if not dist.is_initialized():
        return 1

    return dist.get_world_size()


def reduce_sum(tensor):
    if not dist.is_available():
        return tensor

    if not dist.is_initialized():
        return tensor

    tensor = tensor.clone()
    dist.all_reduce(tensor, op=dist.ReduceOp.SUM)

    return tensor


def gather_grad(params):
    world_size = get_world_size()
    
    if world_size == 1:
        return

    for param in params:
        if param.grad is not None:
            dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
            param.grad.data.div_(world_size)


def all_gather(data):
    world_size = get_world_size()

    if world_size == 1:
        return [data]

    buffer = pickle.dumps(data)
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to('cuda')

    local_size = torch.IntTensor([tensor.numel()]).to('cuda')
    size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)]
    dist.all_gather(size_list, local_size)
    size_list = [int(size.item()) for size in size_list]
    max_size = max(size_list)

    tensor_list = []
    for _ in size_list:
        tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda'))

    if local_size != max_size:
        padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda')
        tensor = torch.cat((tensor, padding), 0)

    dist.all_gather(tensor_list, tensor)

    data_list = []

    for size, tensor in zip(size_list, tensor_list):
        buffer = tensor.cpu().numpy().tobytes()[:size]
        data_list.append(pickle.loads(buffer))

    return data_list


def reduce_loss_dict(loss_dict):
    world_size = get_world_size()

    if world_size < 2:
        return loss_dict

    with torch.no_grad():
        keys = []
        losses = []

        for k in sorted(loss_dict.keys()):
            keys.append(k)
            losses.append(loss_dict[k])

        losses = torch.stack(losses, 0)
        dist.reduce(losses, dst=0)

        if dist.get_rank() == 0:
            losses /= world_size

        reduced_losses = {k: v for k, v in zip(keys, losses)}

    return reduced_losses