File size: 11,469 Bytes
e628a3b
 
 
 
8e4ade6
c671d25
e628a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import torch
import numpy as np
import math
from torch import nn
from stylegan_model import ConvLayer, EqualLinear, Generator, ResBlock
from dualstylegan import AdaptiveInstanceNorm, AdaResBlock, DualStyleGAN
import torch.nn.functional as F

# IC-GAN: stylegan discriminator    
class ConditionalDiscriminator(nn.Module):
    def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], use_condition=False, style_num=None):
        super().__init__()

        channels = {
            4: 512,
            8: 512,
            16: 512,
            32: 512,
            64: 256 * channel_multiplier,
            128: 128 * channel_multiplier,
            256: 64 * channel_multiplier,
            512: 32 * channel_multiplier,
            1024: 16 * channel_multiplier,
        }

        convs = [ConvLayer(3, channels[size], 1)]

        log_size = int(math.log(size, 2))

        in_channel = channels[size]

        for i in range(log_size, 2, -1):
            out_channel = channels[2 ** (i - 1)]

            convs.append(ResBlock(in_channel, out_channel, blur_kernel))

            in_channel = out_channel

        self.convs = nn.Sequential(*convs)

        self.stddev_group = 4
        self.stddev_feat = 1
        self.use_condition = use_condition
        
        if self.use_condition:
            self.condition_dim = 128
            # map style degree to 64-dimensional vector
            self.label_mapper = nn.Sequential(
                nn.Linear(1, 64),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Linear(64, 64),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Linear(64, self.condition_dim//2),
            )
            # map style code index to 64-dimensional vector
            self.style_mapper = nn.Embedding(style_num, self.condition_dim-self.condition_dim//2)
        else:
            self.condition_dim = 1
            
        self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
        self.final_linear = nn.Sequential(
            EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
            EqualLinear(channels[4], self.condition_dim),
        )
        
    def forward(self, input, degree_label=None, style_ind=None):
        out = self.convs(input)

        batch, channel, height, width = out.shape
        group = min(batch, self.stddev_group)
        stddev = out.view(
            group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
        )
        stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
        stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
        stddev = stddev.repeat(group, 1, height, width)
        out = torch.cat([out, stddev], 1)

        out = self.final_conv(out)
        out = out.view(batch, -1)
        
        if self.use_condition:
            h = self.final_linear(out)
            condition = torch.cat((self.label_mapper(degree_label), self.style_mapper(style_ind)), dim=1)
            out = (h * condition).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.condition_dim))
        else:
            out = self.final_linear(out)
            
        return out 
    

class VToonifyResBlock(nn.Module):
    def __init__(self, fin):
        super().__init__()

        self.conv = nn.Conv2d(fin, fin, 3,  1, 1)
        self.conv2 = nn.Conv2d(fin, fin, 3,  1, 1)
        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
        
    def forward(self, x):
        out = self.lrelu(self.conv(x))
        out = self.lrelu(self.conv2(out))      
        out = (out + x) / math.sqrt(2)
        return out    

class Fusion(nn.Module):
    def __init__(self, in_channels, skip_channels, out_channels):
        super().__init__()

        # create conv layers
        self.conv = nn.Conv2d(in_channels + skip_channels, out_channels, 3, 1, 1, bias=True)
        self.norm = AdaptiveInstanceNorm(in_channels + skip_channels, 128)
        self.conv2 = nn.Conv2d(in_channels + skip_channels, 1, 3, 1, 1, bias=True)
        #'''
        self.linear = nn.Sequential(
            nn.Linear(1, 64),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
            nn.Linear(64, 128),
            nn.LeakyReLU(negative_slope=0.2, inplace=True)
        )

    def forward(self, f_G, f_E, d_s=1):
        # label of style degree
        label = self.linear(torch.zeros(f_G.size(0),1).to(f_G.device) + d_s)
        out = torch.cat([f_G, abs(f_G-f_E)], dim=1)
        m_E = (F.relu(self.conv2(self.norm(out, label)))).tanh()
        f_out = self.conv(torch.cat([f_G, f_E * m_E], dim=1))
        return f_out, m_E
    
class VToonify(nn.Module):
    def __init__(self,
                 in_size=256,
                 out_size=1024,
                 img_channels=3,
                 style_channels=512,
                 num_mlps=8,
                 channel_multiplier=2,
                 num_res_layers=6,
                 backbone = 'dualstylegan',
                ):

        super().__init__()

        self.backbone = backbone
        if self.backbone == 'dualstylegan':
            # DualStyleGAN, with weights being fixed
            self.generator = DualStyleGAN(out_size, style_channels, num_mlps, channel_multiplier)
        else:
            # StyleGANv2, with weights being fixed
            self.generator = Generator(out_size, style_channels, num_mlps, channel_multiplier)

        self.in_size = in_size
        self.style_channels = style_channels
        channels = self.generator.channels

        # encoder
        num_styles = int(np.log2(out_size)) * 2 - 2
        encoder_res = [2**i for i in range(int(np.log2(in_size)), 4, -1)]
        self.encoder = nn.ModuleList()
        self.encoder.append(
            nn.Sequential(
                nn.Conv2d(img_channels+19, 32, 3, 1, 1, bias=True), 
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(32, channels[in_size], 3, 1, 1, bias=True),
                nn.LeakyReLU(negative_slope=0.2, inplace=True)))
        
        for res in encoder_res:
            in_channels = channels[res]
            if res > 32:
                out_channels = channels[res // 2]
                block = nn.Sequential(
                    nn.Conv2d(in_channels, out_channels, 3, 2, 1, bias=True),
                    nn.LeakyReLU(negative_slope=0.2, inplace=True),
                    nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=True),
                    nn.LeakyReLU(negative_slope=0.2, inplace=True))
                self.encoder.append(block)
            else:
                layers = []
                for _ in range(num_res_layers):
                    layers.append(VToonifyResBlock(in_channels))
                self.encoder.append(nn.Sequential(*layers))
                block = nn.Conv2d(in_channels, img_channels, 1, 1, 0, bias=True)
                self.encoder.append(block)
        
        # trainable fusion module
        self.fusion_out = nn.ModuleList()
        self.fusion_skip = nn.ModuleList()
        for res in encoder_res[::-1]:
            num_channels = channels[res]
            if self.backbone == 'dualstylegan':
                self.fusion_out.append(
                    Fusion(num_channels, num_channels, num_channels))
            else:
                self.fusion_out.append(
                    nn.Conv2d(num_channels * 2, num_channels, 3, 1, 1, bias=True))

            self.fusion_skip.append(
                nn.Conv2d(num_channels + 3, 3, 3, 1, 1, bias=True))
        
        # Modified ModRes blocks in DualStyleGAN, with weights being fixed
        if self.backbone == 'dualstylegan':
            self.res = nn.ModuleList()
            self.res.append(AdaResBlock(self.generator.channels[2 ** 2])) # for conv1, no use in this model
            for i in range(3, 6):
                out_channel = self.generator.channels[2 ** i]
                self.res.append(AdaResBlock(out_channel, dilation=2**(5-i)))
                self.res.append(AdaResBlock(out_channel, dilation=2**(5-i)))

    
    def forward(self, x, style, d_s=None, return_mask=False, return_feat=False):
        # map style to W+ space
        if style is not None and style.ndim < 3:
            if self.backbone == 'dualstylegan':
                resstyles = self.generator.style(style).unsqueeze(1).repeat(1, self.generator.n_latent, 1)
            adastyles = style.unsqueeze(1).repeat(1, self.generator.n_latent, 1)
        elif style is not None:
            nB, nL, nD = style.shape
            if self.backbone == 'dualstylegan':
                resstyles = self.generator.style(style.reshape(nB*nL, nD)).reshape(nB, nL, nD)
            adastyles = style
        if self.backbone == 'dualstylegan':
            adastyles = adastyles.clone()
            for i in range(7, self.generator.n_latent):
                adastyles[:, i] = self.generator.res[i](adastyles[:, i])

        # obtain multi-scale content features
        feat = x
        encoder_features = []
        # downsampling conv parts of E
        for block in self.encoder[:-2]:
            feat = block(feat)
            encoder_features.append(feat)
        encoder_features = encoder_features[::-1]
        # Resblocks in E
        for ii, block in enumerate(self.encoder[-2]):
            feat = block(feat)
            # adjust Resblocks with ModRes blocks
            if self.backbone == 'dualstylegan':
                feat = self.res[ii+1](feat, resstyles[:, ii+1], d_s)
        # the last-layer feature of E (inputs of backbone)
        out = feat
        skip = self.encoder[-1](feat)
        if return_feat:
            return out, skip
        
        # 32x32 ---> higher res
        _index = 1
        m_Es = []
        for conv1, conv2, to_rgb in zip(
            self.stylegan().convs[6::2], self.stylegan().convs[7::2], self.stylegan().to_rgbs[3:]): 
            
            # pass the mid-layer features of E to the corresponding resolution layers of G
            if 2 ** (5+((_index-1)//2)) <= self.in_size:
                fusion_index = (_index - 1) // 2
                f_E = encoder_features[fusion_index]

                if self.backbone == 'dualstylegan':
                    out, m_E = self.fusion_out[fusion_index](out, f_E, d_s)
                    skip = self.fusion_skip[fusion_index](torch.cat([skip, f_E*m_E], dim=1))
                    m_Es += [m_E]
                else:
                    out = self.fusion_out[fusion_index](torch.cat([out, f_E], dim=1))
                    skip = self.fusion_skip[fusion_index](torch.cat([skip, f_E], dim=1))  
            
            # remove the noise input
            batch, _, height, width = out.shape
            noise = x.new_empty(batch, 1, height * 2, width * 2).normal_().detach() * 0.0
            
            out = conv1(out, adastyles[:, _index+6], noise=noise)
            out = conv2(out, adastyles[:, _index+7], noise=noise)
            skip = to_rgb(out, adastyles[:, _index+8], skip)
            _index += 2

        image = skip
        if return_mask and self.backbone == 'dualstylegan':
            return image, m_Es
        return image
    
    def stylegan(self):
        if self.backbone == 'dualstylegan':
            return self.generator.generator
        else:
            return self.generator
        
    def zplus2wplus(self, zplus):
        return self.stylegan().style(zplus.reshape(zplus.shape[0]*zplus.shape[1], zplus.shape[2])).reshape(zplus.shape)