File size: 19,182 Bytes
f13deb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import argparse
import math
import random

import numpy as np
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
from tqdm import tqdm
from PIL import Image
from util import *
from model.stylegan import lpips
from model.stylegan.model import Generator, Downsample
from model.vtoonify import VToonify, ConditionalDiscriminator
from model.bisenet.model import BiSeNet
from model.simple_augment import random_apply_affine
from model.stylegan.distributed import (
    get_rank,
    synchronize,
    reduce_loss_dict,
    reduce_sum,
    get_world_size,
)

# In the paper, --weight for each style is set as follows,
# cartoon: default
# caricature: default
# pixar: 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
# comic: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1
# arcane: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1

class TrainOptions():
    def __init__(self):

        self.parser = argparse.ArgumentParser(description="Train VToonify-T")
        self.parser.add_argument("--iter", type=int, default=2000, help="total training iterations")
        self.parser.add_argument("--batch", type=int, default=8, help="batch sizes for each gpus")
        self.parser.add_argument("--lr", type=float, default=0.0001, help="learning rate")
        self.parser.add_argument("--local_rank", type=int, default=0, help="local rank for distributed training")
        self.parser.add_argument("--start_iter", type=int, default=0, help="start iteration")
        self.parser.add_argument("--save_every", type=int, default=30000, help="interval of saving a checkpoint")
        self.parser.add_argument("--save_begin", type=int, default=30000, help="when to start saving a checkpoint")
        self.parser.add_argument("--log_every", type=int, default=200, help="interval of saving an intermediate image result")
        
        self.parser.add_argument("--adv_loss", type=float, default=0.01, help="the weight of adv loss")
        self.parser.add_argument("--grec_loss", type=float, default=0.1, help="the weight of mse recontruction loss")
        self.parser.add_argument("--perc_loss", type=float, default=0.01, help="the weight of perceptual loss")
        self.parser.add_argument("--tmp_loss", type=float, default=1.0, help="the weight of temporal consistency loss")
        
        self.parser.add_argument("--encoder_path", type=str, default=None, help="path to the pretrained encoder model")    
        self.parser.add_argument("--direction_path", type=str, default='./checkpoint/directions.npy', help="path to the editing direction latents")
        self.parser.add_argument("--stylegan_path", type=str, default='./checkpoint/stylegan2-ffhq-config-f.pt', help="path to the stylegan model")
        self.parser.add_argument("--finetunegan_path", type=str, default='./checkpoint/cartoon/finetune-000600.pt', help="path to the finetuned stylegan model")
        self.parser.add_argument("--weight", type=float, nargs=18, default=[1]*9+[0]*9, help="the weight for blending two models")
        self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model")
        self.parser.add_argument("--style_encoder_path", type=str, default='./checkpoint/encoder.pt', help="path of the style encoder")
        
        self.parser.add_argument("--name", type=str, default='vtoonify_t_cartoon', help="saved model name")
        self.parser.add_argument("--pretrain", action="store_true", help="if true, only pretrain the encoder")

    def parse(self):
        self.opt = self.parser.parse_args()
        if self.opt.encoder_path is None:
            self.opt.encoder_path = os.path.join('./checkpoint/', self.opt.name, 'pretrain.pt')
        args = vars(self.opt)
        if self.opt.local_rank == 0:
            print('Load options')
            for name, value in sorted(args.items()):
                print('%s: %s' % (str(name), str(value)))
        return self.opt
    

# pretrain E of vtoonify. 
# We train E so that its the last-layer feature matches the original 8-th-layer input feature of G1
# See Model initialization in Sec. 4.1.2 for the detail
def pretrain(args, generator, g_optim, g_ema, parsingpredictor, down, directions, basemodel, device):
    pbar = range(args.iter)

    if get_rank() == 0:
        pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)

    recon_loss = torch.tensor(0.0, device=device)
    loss_dict = {}

    if args.distributed:
        g_module = generator.module
    else:
        g_module = generator

    accum = 0.5 ** (32 / (10 * 1000))
    
    requires_grad(g_module.encoder, True)
    
    for idx in pbar:
        i = idx + args.start_iter
        
        if i > args.iter:
            print("Done!")
            break
            
        with torch.no_grad():
            # during pretraining, no geometric transformations are applied.
            noise_sample = torch.randn(args.batch, 512).cuda()
            ws_ = basemodel.style(noise_sample).unsqueeze(1).repeat(1,18,1) # random w
            ws_[:, 3:7] += directions[torch.randint(0, directions.shape[0], (args.batch,)), 3:7] # w''=w'=w+n
            img_gen, _ = basemodel([ws_], input_is_latent=True, truncation=0.5, truncation_latent=0) # image part of x'
            img_gen = torch.clamp(img_gen, -1, 1).detach() 
            img_gen512 = down(img_gen.detach())
            img_gen256 = down(img_gen512.detach()) # image part of x'_down
            mask512 = parsingpredictor(2*torch.clamp(img_gen512, -1, 1))[0] 
            real_input = torch.cat((img_gen256, down(mask512)/16.0), dim=1).detach() # x'_down
            # f_G1^(8)(w'')
            real_feat, real_skip = g_ema.generator([ws_], input_is_latent=True, return_feature_ind = 6, truncation=0.5, truncation_latent=0)
            real_feat = real_feat.detach()
            real_skip = real_skip.detach()
            
        # f_E^(last)(x'_down)
        fake_feat, fake_skip = generator(real_input, style=None, return_feat=True)

        # L_E in Eq.(1)
        recon_loss = F.mse_loss(fake_feat, real_feat) + F.mse_loss(fake_skip, real_skip)

        loss_dict["emse"] = recon_loss

        generator.zero_grad()
        recon_loss.backward()  
        g_optim.step()    
        
        accumulate(g_ema.encoder, g_module.encoder, accum)     

        loss_reduced = reduce_loss_dict(loss_dict)

        emse_loss_val = loss_reduced["emse"].mean().item()

        if get_rank() == 0:
            pbar.set_description(
                (
                    f"iter: {i:d}; emse: {emse_loss_val:.3f}"
                )
            )

            if ((i+1) >= args.save_begin and (i+1) % args.save_every == 0) or (i+1) == args.iter:
                if (i+1) == args.iter:
                    savename = f"checkpoint/%s/pretrain.pt"%(args.name)
                else:
                    savename = f"checkpoint/%s/pretrain-%05d.pt"%(args.name, i+1)
                torch.save(
                    {
                        #"g": g_module.encoder.state_dict(),
                        "g_ema": g_ema.encoder.state_dict(),
                    },
                    savename,
                )
                

# generate paired data and train vtoonify, see Sec. 4.1.2 for the detail
def train(args, generator, discriminator, g_optim, d_optim, g_ema, percept, parsingpredictor, down, pspencoder, directions, basemodel, device):
    pbar = range(args.iter)

    if get_rank() == 0:
        pbar = tqdm(pbar, initial=args.start_iter, smoothing=0.01, ncols=120, dynamic_ncols=False)

    d_loss = torch.tensor(0.0, device=device)
    g_loss = torch.tensor(0.0, device=device)
    grec_loss = torch.tensor(0.0, device=device)
    gfeat_loss = torch.tensor(0.0, device=device)
    temporal_loss = torch.tensor(0.0, device=device)
    loss_dict = {}

    if args.distributed:
        g_module = generator.module
        d_module = discriminator.module

    else:
        g_module = generator
        d_module = discriminator

    accum = 0.5 ** (32 / (10 * 1000))
    
    for idx in pbar:
        i = idx + args.start_iter
        
        if i > args.iter:
            print("Done!")
            break
        
        ###### This part is for data generation. Generate pair (x, y, w'') as in Fig. 5 of the paper
        with torch.no_grad():   
            noise_sample = torch.randn(args.batch, 512).cuda()
            wc = basemodel.style(noise_sample).unsqueeze(1).repeat(1,18,1) # random w
            wc[:, 3:7] += directions[torch.randint(0, directions.shape[0], (args.batch,)), 3:7] # w'=w+n
            wc = wc.detach()
            xc, _ = basemodel([wc], input_is_latent=True, truncation=0.5, truncation_latent=0) 
            xc = torch.clamp(xc, -1, 1).detach() # x'
            xl = pspencoder(F.adaptive_avg_pool2d(xc, 256))
            xl = basemodel.style(xl.reshape(xl.shape[0]*xl.shape[1], xl.shape[2])).reshape(xl.shape) # E_s(x'_down)
            xl = torch.cat((wc[:,0:7]*0.5, xl[:,7:18]), dim=1).detach() # w'' = concatenate w' and E_s(x'_down)
            xs, _ = g_ema.generator([xl], input_is_latent=True)
            xs = torch.clamp(xs, -1, 1).detach() # y'
            # during training, random geometric transformations are applied.
            imgs, _ = random_apply_affine(torch.cat((xc.detach(),xs), dim=1), 0.2, None)
            real_input1024 = imgs[:,0:3].detach() # image part of x
            real_input512 = down(real_input1024).detach()
            real_input256 = down(real_input512).detach()
            mask512 = parsingpredictor(2*real_input512)[0]
            mask256 = down(mask512).detach()
            mask = F.adaptive_avg_pool2d(mask512, 1024).detach() # parsing part of x
            real_output = imgs[:,3:].detach()  # y
            real_input = torch.cat((real_input256, mask256/16.0), dim=1) # x_down
            # for log, sample a fixed input-output pair (x_down, y, w'')
            if idx == 0 or i == 0:
                samplein = real_input.clone().detach()
                sampleout = real_output.clone().detach()
                samplexl = xl.clone().detach()
        
        ###### This part is for training discriminator
        
        requires_grad(g_module.encoder, False)
        requires_grad(g_module.fusion_out, False)
        requires_grad(g_module.fusion_skip, False)  
        requires_grad(discriminator, True)
        
        fake_output = generator(real_input, xl)
        fake_pred = discriminator(F.adaptive_avg_pool2d(fake_output, 256))
        real_pred = discriminator(F.adaptive_avg_pool2d(real_output, 256))
        
        # L_adv in Eq.(3)
        d_loss = d_logistic_loss(real_pred, fake_pred) * args.adv_loss 
        loss_dict["d"] = d_loss
        
        discriminator.zero_grad()
        d_loss.backward()
        d_optim.step()    
        
        ###### This part is for training generator (encoder and fusion modules)
        
        requires_grad(g_module.encoder, True)
        requires_grad(g_module.fusion_out, True)
        requires_grad(g_module.fusion_skip, True)    
        requires_grad(discriminator, False)        

        fake_output = generator(real_input, xl)
        fake_pred = discriminator(F.adaptive_avg_pool2d(fake_output, 256))
        # L_adv in Eq.(3)
        g_loss = g_nonsaturating_loss(fake_pred) * args.adv_loss
        # L_rec in Eq.(2)
        grec_loss = F.mse_loss(fake_output, real_output) * args.grec_loss
        gfeat_loss = percept(F.adaptive_avg_pool2d(fake_output, 512), # 1024 will out of memory
                             F.adaptive_avg_pool2d(real_output, 512)).sum() * args.perc_loss # 256 will get blurry output
 
        loss_dict["g"] = g_loss
        loss_dict["gr"] = grec_loss
        loss_dict["gf"] = gfeat_loss

        w = random.randint(0,1024-896)
        h = random.randint(0,1024-896)
        crop_input = torch.cat((real_input1024[:,:,w:w+896,h:h+896], mask[:,:,w:w+896,h:h+896]/16.0), dim=1).detach()
        crop_input = down(down(crop_input))  
        crop_fake_output = fake_output[:,:,w:w+896,h:h+896]
        fake_crop_output = generator(crop_input, xl)
        # L_tmp in Eq.(4), gradually increase the weight of L_tmp
        temporal_loss = ((fake_crop_output-crop_fake_output)**2).mean() * max(idx/(args.iter/2.0)-1, 0) * args.tmp_loss
        loss_dict["tp"] = temporal_loss

        generator.zero_grad()
        (g_loss + grec_loss + gfeat_loss + temporal_loss).backward() 
        g_optim.step()        
        
        accumulate(g_ema.encoder, g_module.encoder, accum)
        accumulate(g_ema.fusion_out, g_module.fusion_out, accum)
        accumulate(g_ema.fusion_skip, g_module.fusion_skip, accum)        

        loss_reduced = reduce_loss_dict(loss_dict)

        d_loss_val = loss_reduced["d"].mean().item()
        g_loss_val = loss_reduced["g"].mean().item()
        gr_loss_val = loss_reduced["gr"].mean().item()
        gf_loss_val = loss_reduced["gf"].mean().item()
        tmp_loss_val = loss_reduced["tp"].mean().item()

        if get_rank() == 0:
            pbar.set_description(
                (
                    f"iter: {i:d}; advd: {d_loss_val:.3f}; advg: {g_loss_val:.3f}; mse: {gr_loss_val:.3f}; "
                    f"perc: {gf_loss_val:.3f}; tmp: {tmp_loss_val:.3f}"
                )
            )

            if i % args.log_every == 0 or (i+1) == args.iter:
                with torch.no_grad():
                    g_ema.eval()
                    sample = g_ema(samplein, samplexl)
                    sample = F.interpolate(torch.cat((sampleout, sample), dim=0), 256)
                    utils.save_image(
                        sample,
                        f"log/%s/%05d.jpg"%(args.name, i),
                        nrow=int(args.batch),
                        normalize=True,
                        range=(-1, 1),
                    )

            if ((i+1) >= args.save_begin and (i+1) % args.save_every == 0) or (i+1) == args.iter:
                if (i+1) == args.iter:
                    savename = f"checkpoint/%s/vtoonify.pt"%(args.name)
                else:
                    savename = f"checkpoint/%s/vtoonify_%05d.pt"%(args.name, i+1)                
                torch.save(
                    {
                        #"g": g_module.state_dict(),
                        #"d": d_module.state_dict(),
                        "g_ema": g_ema.state_dict(),
                    },
                    savename,
                )
                
                

if __name__ == "__main__":
    
    device = "cuda"
    parser = TrainOptions()  
    args = parser.parse()
    if args.local_rank == 0:
        print('*'*98)
        if not os.path.exists("log/%s/"%(args.name)):
            os.makedirs("log/%s/"%(args.name))
        if not os.path.exists("checkpoint/%s/"%(args.name)):
            os.makedirs("checkpoint/%s/"%(args.name))
        
    n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = n_gpu > 1

    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
        synchronize()

    generator = VToonify(backbone = 'toonify').to(device)
    generator.apply(weights_init)
    g_ema = VToonify(backbone = 'toonify').to(device)
    g_ema.eval()

    basemodel = Generator(1024, 512, 8, 2).to(device) # G0
    finetunemodel = Generator(1024, 512, 8, 2).to(device) 
    basemodel.load_state_dict(torch.load(args.stylegan_path, map_location=lambda storage, loc: storage)['g_ema'])
    finetunemodel.load_state_dict(torch.load(args.finetunegan_path, map_location=lambda storage, loc: storage)['g_ema'])
    fused_state_dict = blend_models(finetunemodel, basemodel, args.weight) # G1
    generator.generator.load_state_dict(fused_state_dict) # load G1
    g_ema.generator.load_state_dict(fused_state_dict)
    requires_grad(basemodel, False)
    requires_grad(generator.generator, False)
    requires_grad(g_ema.generator, False)

    if not args.pretrain:
        generator.encoder.load_state_dict(torch.load(args.encoder_path, map_location=lambda storage, loc: storage)["g_ema"])
        # we initialize the fusion modules to map f_G \otimes f_E to f_G.
        for k in generator.fusion_out:
            k.weight.data *= 0.01
            k.weight[:,0:k.weight.shape[0],1,1].data += torch.eye(k.weight.shape[0]).cuda()
        for k in generator.fusion_skip:
            k.weight.data *= 0.01
            k.weight[:,0:k.weight.shape[0],1,1].data += torch.eye(k.weight.shape[0]).cuda()

    accumulate(g_ema.encoder, generator.encoder, 0)
    accumulate(g_ema.fusion_out, generator.fusion_out, 0)
    accumulate(g_ema.fusion_skip, generator.fusion_skip, 0) 

    g_parameters = list(generator.encoder.parameters()) 
    if not args.pretrain:
        g_parameters = g_parameters + list(generator.fusion_out.parameters()) + list(generator.fusion_skip.parameters())

    g_optim = optim.Adam(
        g_parameters,
        lr=args.lr,
        betas=(0.9, 0.99),
    )

    if args.distributed:
        generator = nn.parallel.DistributedDataParallel(
            generator,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            broadcast_buffers=False,
            find_unused_parameters=True,
        )

    parsingpredictor = BiSeNet(n_classes=19)
    parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage))
    parsingpredictor.to(device).eval()
    requires_grad(parsingpredictor, False)

    # we apply gaussian blur to the images to avoid flickers caused during downsampling
    down = Downsample(kernel=[1, 3, 3, 1], factor=2).to(device)
    requires_grad(down, False)

    directions = torch.tensor(np.load(args.direction_path)).to(device) 

    if not args.pretrain:
        discriminator = ConditionalDiscriminator(256).to(device)

        d_optim = optim.Adam(
            discriminator.parameters(),
            lr=args.lr,
            betas=(0.9, 0.99),
        )    

        if args.distributed:
            discriminator = nn.parallel.DistributedDataParallel(
                discriminator,
                device_ids=[args.local_rank],
                output_device=args.local_rank,
                broadcast_buffers=False,
                find_unused_parameters=True,
            )

        percept = lpips.PerceptualLoss(model="net-lin", net="vgg", use_gpu=device.startswith("cuda"), gpu_ids=[args.local_rank])
        requires_grad(percept.model.net, False)

        pspencoder = load_psp_standalone(args.style_encoder_path, device)  
    
    if args.local_rank == 0:
        print('Load models and data successfully loaded!')

    if args.pretrain:
        pretrain(args, generator, g_optim, g_ema, parsingpredictor, down, directions, basemodel, device)
    else:
        train(args, generator, discriminator, g_optim, d_optim, g_ema, percept, parsingpredictor, down, pspencoder, directions, basemodel, device)