Arnaudding001 commited on
Commit
8ae9e74
1 Parent(s): 7f409ae

Create encoder_encoders_model_irse.py

Browse files
Files changed (1) hide show
  1. encoder_encoders_model_irse.py +84 -0
encoder_encoders_model_irse.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module
2
+ from model.encoder.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm
3
+
4
+ """
5
+ Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
6
+ """
7
+
8
+
9
+ class Backbone(Module):
10
+ def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True):
11
+ super(Backbone, self).__init__()
12
+ assert input_size in [112, 224], "input_size should be 112 or 224"
13
+ assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
14
+ assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
15
+ blocks = get_blocks(num_layers)
16
+ if mode == 'ir':
17
+ unit_module = bottleneck_IR
18
+ elif mode == 'ir_se':
19
+ unit_module = bottleneck_IR_SE
20
+ self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
21
+ BatchNorm2d(64),
22
+ PReLU(64))
23
+ if input_size == 112:
24
+ self.output_layer = Sequential(BatchNorm2d(512),
25
+ Dropout(drop_ratio),
26
+ Flatten(),
27
+ Linear(512 * 7 * 7, 512),
28
+ BatchNorm1d(512, affine=affine))
29
+ else:
30
+ self.output_layer = Sequential(BatchNorm2d(512),
31
+ Dropout(drop_ratio),
32
+ Flatten(),
33
+ Linear(512 * 14 * 14, 512),
34
+ BatchNorm1d(512, affine=affine))
35
+
36
+ modules = []
37
+ for block in blocks:
38
+ for bottleneck in block:
39
+ modules.append(unit_module(bottleneck.in_channel,
40
+ bottleneck.depth,
41
+ bottleneck.stride))
42
+ self.body = Sequential(*modules)
43
+
44
+ def forward(self, x):
45
+ x = self.input_layer(x)
46
+ x = self.body(x)
47
+ x = self.output_layer(x)
48
+ return l2_norm(x)
49
+
50
+
51
+ def IR_50(input_size):
52
+ """Constructs a ir-50 model."""
53
+ model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False)
54
+ return model
55
+
56
+
57
+ def IR_101(input_size):
58
+ """Constructs a ir-101 model."""
59
+ model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False)
60
+ return model
61
+
62
+
63
+ def IR_152(input_size):
64
+ """Constructs a ir-152 model."""
65
+ model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False)
66
+ return model
67
+
68
+
69
+ def IR_SE_50(input_size):
70
+ """Constructs a ir_se-50 model."""
71
+ model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False)
72
+ return model
73
+
74
+
75
+ def IR_SE_101(input_size):
76
+ """Constructs a ir_se-101 model."""
77
+ model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False)
78
+ return model
79
+
80
+
81
+ def IR_SE_152(input_size):
82
+ """Constructs a ir_se-152 model."""
83
+ model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False)
84
+ return model