Spaces:
Runtime error
Runtime error
Arnaudding001
commited on
Commit
•
c642d93
1
Parent(s):
5914e7c
Create stylegan_prepare_data.py
Browse files- stylegan_prepare_data.py +105 -0
stylegan_prepare_data.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from io import BytesIO
|
3 |
+
import multiprocessing
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
import lmdb
|
9 |
+
from tqdm import tqdm
|
10 |
+
from torchvision import datasets
|
11 |
+
from torchvision.transforms import functional as trans_fn
|
12 |
+
|
13 |
+
|
14 |
+
def resize_and_convert(img, size, resample, quality=100):
|
15 |
+
img = trans_fn.resize(img, size, resample)
|
16 |
+
img = trans_fn.center_crop(img, size)
|
17 |
+
buffer = BytesIO()
|
18 |
+
img.save(buffer, format="jpeg", quality=quality)
|
19 |
+
val = buffer.getvalue()
|
20 |
+
|
21 |
+
return val
|
22 |
+
|
23 |
+
|
24 |
+
def resize_multiple(
|
25 |
+
img, sizes=(128, 256, 512, 1024), resample=Image.LANCZOS, quality=100
|
26 |
+
):
|
27 |
+
imgs = []
|
28 |
+
|
29 |
+
for size in sizes:
|
30 |
+
imgs.append(resize_and_convert(img, size, resample, quality))
|
31 |
+
|
32 |
+
return imgs
|
33 |
+
|
34 |
+
|
35 |
+
def resize_worker(img_file, sizes, resample):
|
36 |
+
i, file = img_file
|
37 |
+
img = Image.open(file)
|
38 |
+
img = img.convert("RGB")
|
39 |
+
out = resize_multiple(img, sizes=sizes, resample=resample)
|
40 |
+
|
41 |
+
return i, out
|
42 |
+
|
43 |
+
|
44 |
+
def prepare(
|
45 |
+
env, dataset, n_worker, sizes=(128, 256, 512, 1024), resample=Image.LANCZOS
|
46 |
+
):
|
47 |
+
resize_fn = partial(resize_worker, sizes=sizes, resample=resample)
|
48 |
+
|
49 |
+
files = sorted(dataset.imgs, key=lambda x: x[0])
|
50 |
+
files = [(i, file) for i, (file, label) in enumerate(files)]
|
51 |
+
total = 0
|
52 |
+
|
53 |
+
with multiprocessing.Pool(n_worker) as pool:
|
54 |
+
for i, imgs in tqdm(pool.imap_unordered(resize_fn, files)):
|
55 |
+
for size, img in zip(sizes, imgs):
|
56 |
+
key = f"{size}-{str(i).zfill(5)}".encode("utf-8")
|
57 |
+
|
58 |
+
with env.begin(write=True) as txn:
|
59 |
+
txn.put(key, img)
|
60 |
+
|
61 |
+
total += 1
|
62 |
+
|
63 |
+
with env.begin(write=True) as txn:
|
64 |
+
txn.put("length".encode("utf-8"), str(total).encode("utf-8"))
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
parser = argparse.ArgumentParser(description="Preprocess images for model training")
|
69 |
+
parser.add_argument("--out", type=str, help="filename of the result lmdb dataset")
|
70 |
+
parser.add_argument(
|
71 |
+
"--size",
|
72 |
+
type=str,
|
73 |
+
default="128,256,512,1024",
|
74 |
+
help="resolutions of images for the dataset",
|
75 |
+
)
|
76 |
+
parser.add_argument(
|
77 |
+
"--n_worker",
|
78 |
+
type=int,
|
79 |
+
default=8,
|
80 |
+
help="number of workers for preparing dataset",
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--resample",
|
84 |
+
type=str,
|
85 |
+
default="lanczos",
|
86 |
+
help="resampling methods for resizing images",
|
87 |
+
)
|
88 |
+
parser.add_argument("path", type=str, help="path to the image dataset")
|
89 |
+
|
90 |
+
args = parser.parse_args()
|
91 |
+
|
92 |
+
if not os.path.exists(args.out):
|
93 |
+
os.makedirs(args.out)
|
94 |
+
|
95 |
+
resample_map = {"lanczos": Image.LANCZOS, "bilinear": Image.BILINEAR}
|
96 |
+
resample = resample_map[args.resample]
|
97 |
+
|
98 |
+
sizes = [int(s.strip()) for s in args.size.split(",")]
|
99 |
+
|
100 |
+
print(f"Make dataset of image sizes:", ", ".join(str(s) for s in sizes))
|
101 |
+
|
102 |
+
imgset = datasets.ImageFolder(args.path)
|
103 |
+
|
104 |
+
with lmdb.open(args.out, map_size=1024 ** 4, readahead=False) as env:
|
105 |
+
prepare(env, imgset, args.n_worker, sizes=sizes, resample=resample)
|