mport os #os.environ['CUDA_VISIBLE_DEVICES'] = "0" import numpy as np import cv2 import math import argparse from tqdm import tqdm import torch from torch import nn from torchvision import transforms import torch.nn.functional as F from model.raft.core.raft import RAFT from model.raft.core.utils.utils import InputPadder from model.bisenet.model import BiSeNet from model.stylegan.model import Downsample class Options(): def __init__(self): self.parser = argparse.ArgumentParser(description="Smooth Parsing Maps") self.parser.add_argument("--window_size", type=int, default=5, help="temporal window size") self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model") self.parser.add_argument("--raft_path", type=str, default='./checkpoint/raft-things.pth', help="path of the RAFT model") self.parser.add_argument("--video_path", type=str, help="path of the target video") self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output parsing maps") def parse(self): self.opt = self.parser.parse_args() args = vars(self.opt) print('Load options') for name, value in sorted(args.items()): print('%s: %s' % (str(name), str(value))) return self.opt # from RAFT def warp(x, flo): """ warp an image/tensor (im2) back to im1, according to the optical flow x: [B, C, H, W] (im2) flo: [B, 2, H, W] flow """ B, C, H, W = x.size() # mesh grid xx = torch.arange(0, W).view(1,-1).repeat(H,1) yy = torch.arange(0, H).view(-1,1).repeat(1,W) xx = xx.view(1,1,H,W).repeat(B,1,1,1) yy = yy.view(1,1,H,W).repeat(B,1,1,1) grid = torch.cat((xx,yy),1).float() #x = x.cuda() grid = grid.cuda() vgrid = grid + flo # B,2,H,W # scale grid to [-1,1] ##2019 code vgrid[:,0,:,:] = 2.0*vgrid[:,0,:,:].clone()/max(W-1,1)-1.0 vgrid[:,1,:,:] = 2.0*vgrid[:,1,:,:].clone()/max(H-1,1)-1.0 vgrid = vgrid.permute(0,2,3,1) output = nn.functional.grid_sample(x, vgrid,align_corners=True) mask = torch.autograd.Variable(torch.ones(x.size())).cuda() mask = nn.functional.grid_sample(mask, vgrid,align_corners=True) ##2019 author mask[mask<0.9999] = 0 mask[mask>0] = 1 ##2019 code # mask = torch.floor(torch.clamp(mask, 0 ,1)) return output*mask, mask if __name__ == "__main__": parser = Options() args = parser.parse() print('*'*98) device = "cuda" transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]), ]) parser = argparse.ArgumentParser() parser.add_argument('--model', help="restore checkpoint") parser.add_argument('--small', action='store_true', help='use small model') parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation') raft_model = torch.nn.DataParallel(RAFT(parser.parse_args(['--model', args.raft_path]))) raft_model.load_state_dict(torch.load(args.raft_path)) raft_model = raft_model.module raft_model.to(device) raft_model.eval() parsingpredictor = BiSeNet(n_classes=19) parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage)) parsingpredictor.to(device).eval() down = Downsample(kernel=[1, 3, 3, 1], factor=2).to(device).eval() print('Load models successfully!') window = args.window_size video_cap = cv2.VideoCapture(args.video_path) num = int(video_cap.get(7)) Is = [] for i in range(num): success, frame = video_cap.read() if success == False: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) with torch.no_grad(): Is += [transform(frame).unsqueeze(dim=0).cpu()] video_cap.release() # enlarge frames for more accurate parsing maps and optical flows Is = F.upsample(torch.cat(Is, dim=0), scale_factor=2, mode='bilinear') Is_ = torch.cat((Is[0:window], Is, Is[-window:]), dim=0) print('Load video with %d frames successfully!'%(len(Is))) Ps = [] for i in tqdm(range(len(Is))): with torch.no_grad(): Ps += [parsingpredictor(2*Is[i:i+1].to(device))[0].detach().cpu()] Ps = torch.cat(Ps, dim=0) Ps_ = torch.cat((Ps[0:window], Ps, Ps[-window:]), dim=0) print('Predict parsing maps successfully!') # temporal weights of the (2*args.window_size+1) frames wt = torch.exp(-(torch.arange(2*window+1).float()-window)**2/(2*((window+0.5)**2))).reshape(2*window+1,1,1,1).to(device) parse = [] for ii in tqdm(range(len(Is))): i = ii + window image2 = Is_[i-window:i+window+1].to(device) image1 = Is_[i].repeat(2*window+1,1,1,1).to(device) padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) with torch.no_grad(): flow_low, flow_up = raft_model((image1+1)*255.0/2, (image2+1)*255.0/2, iters=20, test_mode=True) output, mask = warp(torch.cat((image2, Ps_[i-window:i+window+1].to(device)), dim=1), flow_up) aligned_Is = output[:,0:3].detach() aligned_Ps = output[:,3:].detach() # the spatial weight ws = torch.exp(-((aligned_Is-image1)**2).mean(dim=1, keepdims=True)/(2*(0.2**2))) * mask[:,0:1] aligned_Ps[window] = Ps_[i].to(device) # the weight between i and i shoud be 1.0 ws[window,:,:,:] = 1.0 weights = ws*wt weights = weights / weights.sum(dim=(0), keepdims=True) fused_Ps = (aligned_Ps * weights).sum(dim=0, keepdims=True) parse += [down(fused_Ps).detach().cpu()] parse = torch.cat(parse, dim=0) basename = os.path.basename(args.video_path).split('.')[0] np.save(os.path.join(args.output_path, basename+'_parsingmap.npy'), parse.numpy()) print('Done!')