Spaces:
Runtime error
Runtime error
File size: 22,985 Bytes
1c9751a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
import logging
import math
import os.path
import re
from typing import List
import librosa
import numpy as np
import torch
from time import time as ttime
from contants import config
from gpt_sovits.AR.models.t2s_lightning_module import Text2SemanticLightningModule
from gpt_sovits.module.mel_processing import spectrogram_torch
from gpt_sovits.module.models import SynthesizerTrn
from gpt_sovits.utils import DictToAttrRecursive
from gpt_sovits.text import cleaned_text_to_sequence
from gpt_sovits.text.cleaner import clean_text
from utils.classify_language import classify_language
from utils.data_utils import check_is_none
from utils.sentence import split_languages, sentence_split
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
class GPT_SoVITS:
def __init__(self, sovits_path, gpt_path, device, **kwargs):
self.sovits_path = sovits_path
self.gpt_path = gpt_path
self.hz = config.gpt_sovits_config.hz
self.sampling_rate = None
self.device = device
self.model_handler = None
self.is_half = config.gpt_sovits_config.is_half
self.np_dtype = np.float16 if self.is_half else np.float32
self.torch_dtype = torch.float16 if self.is_half else torch.float32
self.speakers = None
self.lang = ["zh", "ja", "en"]
self.flash_attn_enabled = True
self.prompt_cache: dict = {
"ref_audio_path": None,
"prompt_semantic": None,
"refer_spepc": None,
"prompt_text": None,
"prompt_lang": None,
"phones": None,
"bert_features": None,
"norm_text": None,
}
def load_model(self, model_handler):
self.model_handler = model_handler
self.load_sovits(self.sovits_path)
self.load_gpt(self.gpt_path)
self.tokenizer, self.bert_model = self.model_handler.get_bert_model("CHINESE_ROBERTA_WWM_EXT_LARGE")
self.ssl_model = self.model_handler.get_ssl_model()
def load_weight(self, saved_state_dict, model):
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
# logging.info(f"{k} is not in the checkpoint")
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
def load_sovits(self, sovits_path):
# self.n_semantic = 1024
logging.info(f"Loaded checkpoint '{sovits_path}'")
dict_s2 = torch.load(sovits_path, map_location=self.device)
self.hps = dict_s2["config"]
self.hps = DictToAttrRecursive(self.hps)
self.hps.model.semantic_frame_rate = "25hz"
# self.speakers = [self.hps.get("name")] # 从模型配置中获取名字
self.speakers = [os.path.basename(os.path.dirname(self.sovits_path))] # 用模型文件夹作为名字
self.vq_model = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model).to(self.device)
if config.gpt_sovits_config.is_half:
self.vq_model = self.vq_model.half()
self.vq_model.eval()
self.sampling_rate = self.hps.data.sampling_rate
self.load_weight(dict_s2['weight'], self.vq_model)
def load_gpt(self, gpt_path):
logging.info(f"Loaded checkpoint '{gpt_path}'")
dict_s1 = torch.load(gpt_path, map_location=self.device)
self.gpt_config = dict_s1["config"]
self.max_sec = self.gpt_config.get("data").get("max_sec")
self.t2s_model = Text2SemanticLightningModule(self.gpt_config, "****", is_train=False,
flash_attn_enabled=self.flash_attn_enabled).to(
self.device)
self.load_weight(dict_s1['weight'], self.t2s_model)
if config.gpt_sovits_config.is_half:
self.t2s_model = self.t2s_model.half()
self.t2s_model.eval()
total = sum([param.nelement() for param in self.t2s_model.parameters()])
logging.info(f"Number of parameter: {total / 1e6:.2f}M")
def get_speakers(self):
return self.speakers
def get_cleaned_text(self, text, language):
phones, word2ph, norm_text = clean_text(text, language.replace("all_", ""))
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
def get_cleaned_text_multilang(self, text):
sentences = split_languages(text, expand_abbreviations=True, expand_hyphens=True)
phones, word2ph, norm_text = [], [], []
for sentence, lang in sentences:
lang = classify_language(sentence)
_phones, _word2ph, _norm_text = self.get_cleaned_text(sentence, lang)
phones.extend(_phones)
word2ph.extend(_word2ph)
norm_text.extend(_norm_text)
return phones, word2ph, norm_text
def get_bert_feature(self, text, phones, word2ph, language):
if language == "zh":
with torch.no_grad():
inputs = self.tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(self.device) #####输入是long不用管精度问题,精度随bert_model
res = self.bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# if(config.gpt_sovits_config.is_half==True):phone_level_feature=phone_level_feature.half()
bert = phone_level_feature.T
torch.cuda.empty_cache()
else:
bert = torch.zeros((1024, len(phones)), dtype=self.torch_dtype)
return bert
def get_bert_and_cleaned_text_multilang(self, text: list):
sentences = split_languages(text, expand_abbreviations=True, expand_hyphens=True)
phones, word2ph, norm_text, bert = [], [], [], []
for sentence, lang in sentences:
_phones, _word2ph, _norm_text = self.get_cleaned_text(sentence, lang)
_bert = self.get_bert_feature(sentence, _phones, _word2ph, _norm_text)
phones.extend(_phones)
if _word2ph is not None:
word2ph.extend(_word2ph)
norm_text.extend(_norm_text)
bert.append(_bert)
bert = torch.cat(bert, dim=1).to(self.device, dtype=self.torch_dtype)
return phones, word2ph, norm_text, bert
def get_spepc(self, audio, orig_sr):
"""audio的sampling_rate与模型相同"""
audio = librosa.resample(audio, orig_sr=orig_sr, target_sr=int(self.hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False,
)
return spec
def _set_prompt_semantic(self, reference_audio, reference_audio_sr):
zero_wav = np.zeros(
int(self.sampling_rate * 0.3),
dtype=np.float16 if self.is_half else np.float32,
)
wav16k = librosa.resample(reference_audio, orig_sr=reference_audio_sr, target_sr=16000)
with torch.no_grad():
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
raise OSError("参考音频在3~10秒范围外,请更换!")
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if self.is_half == True:
wav16k = wav16k.half()
zero_wav_torch = zero_wav_torch.half()
wav16k = wav16k.to(self.device)
zero_wav_torch = zero_wav_torch.to(self.device)
wav16k = torch.cat([wav16k, zero_wav_torch]).unsqueeze(0)
ssl_content = self.ssl_model.model(wav16k)[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = self.vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0].to(self.device)
# prompt_semantic = prompt_semantic.unsqueeze(0).to(self.device)
self.prompt_cache["prompt_semantic"] = prompt_semantic
torch.cuda.empty_cache()
def get_first(self, text):
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
def preprocess_text(self, text: str, lang: str, segment_size: int):
texts = sentence_split(text, segment_size)
result = []
for text in texts:
phones, word2ph, norm_text, bert_features = self.get_bert_and_cleaned_text_multilang(text)
res = {
"phones": phones,
"bert_features": bert_features,
"norm_text": norm_text,
}
result.append(res)
return result
def preprocess_prompt(self, reference_audio, reference_audio_sr, prompt_text: str, prompt_lang: str):
if self.prompt_cache.get("prompt_text") != prompt_text:
if prompt_lang.lower() == "auto":
prompt_lang = classify_language(prompt_text)
if (prompt_text[-1] not in splits):
prompt_text += "。" if prompt_lang != "en" else "."
phones, word2ph, norm_text = self.get_cleaned_text(prompt_text, prompt_lang)
bert_features = self.get_bert_feature(norm_text, phones, word2ph, prompt_lang).to(self.device,
dtype=self.torch_dtype)
self.prompt_cache["prompt_text"] = prompt_text
self.prompt_cache["prompt_lang"] = prompt_lang
self.prompt_cache["phones"] = phones
self.prompt_cache["bert_features"] = bert_features
self.prompt_cache["norm_text"] = norm_text
self.prompt_cache["refer_spepc"] = self.get_spepc(reference_audio, orig_sr=reference_audio_sr)
self._set_prompt_semantic(reference_audio, reference_audio_sr)
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length: int = None):
seq = sequences[0]
ndim = seq.dim()
if axis < 0:
axis += ndim
dtype: torch.dtype = seq.dtype
pad_value = torch.tensor(pad_value, dtype=dtype)
seq_lengths = [seq.shape[axis] for seq in sequences]
if max_length is None:
max_length = max(seq_lengths)
else:
max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length
padded_sequences = []
for seq, length in zip(sequences, seq_lengths):
padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value)
padded_sequences.append(padded_seq)
batch = torch.stack(padded_sequences)
return batch
def to_batch(self, data: list, prompt_data: dict = None, batch_size: int = 5, threshold: float = 0.75,
split_bucket: bool = True):
_data: list = []
index_and_len_list = []
for idx, item in enumerate(data):
norm_text_len = len(item["norm_text"])
index_and_len_list.append([idx, norm_text_len])
batch_index_list = []
if split_bucket:
index_and_len_list.sort(key=lambda x: x[1])
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
batch_index_list_len = 0
pos = 0
while pos < index_and_len_list.shape[0]:
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
pos_end = min(pos + batch_size, index_and_len_list.shape[0])
while pos < pos_end:
batch = index_and_len_list[pos:pos_end, 1].astype(np.float32)
score = batch[(pos_end - pos) // 2] / batch.mean()
if (score >= threshold) or (pos_end - pos == 1):
batch_index = index_and_len_list[pos:pos_end, 0].tolist()
batch_index_list_len += len(batch_index)
batch_index_list.append(batch_index)
pos = pos_end
break
pos_end = pos_end - 1
assert batch_index_list_len == len(data)
else:
for i in range(len(data)):
if i % batch_size == 0:
batch_index_list.append([])
batch_index_list[-1].append(i)
for batch_idx, index_list in enumerate(batch_index_list):
item_list = [data[idx] for idx in index_list]
phones_list = []
phones_len_list = []
# bert_features_list = []
all_phones_list = []
all_phones_len_list = []
all_bert_features_list = []
norm_text_batch = []
bert_max_len = 0
phones_max_len = 0
for item in item_list:
if prompt_data is not None:
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)
all_phones = torch.LongTensor(prompt_data["phones"] + item["phones"])
phones = torch.LongTensor(item["phones"])
# norm_text = prompt_data["norm_text"]+item["norm_text"]
else:
all_bert_features = item["bert_features"]
phones = torch.LongTensor(item["phones"])
all_phones = phones
# norm_text = item["norm_text"]
bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
phones_max_len = max(phones_max_len, phones.shape[-1])
phones_list.append(phones)
phones_len_list.append(phones.shape[-1])
all_phones_list.append(all_phones)
all_phones_len_list.append(all_phones.shape[-1])
all_bert_features_list.append(all_bert_features)
norm_text_batch.append(item["norm_text"])
phones_batch = phones_list
max_len = max(bert_max_len, phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
all_bert_features_batch = torch.FloatTensor(len(item_list), 1024, max_len)
all_bert_features_batch.zero_()
for idx, item in enumerate(all_bert_features_list):
if item != None:
all_bert_features_batch[idx, :, : item.shape[-1]] = item
batch = {
"phones": phones_batch,
"phones_len": torch.LongTensor(phones_len_list),
"all_phones": all_phones_batch,
"all_phones_len": torch.LongTensor(all_phones_len_list),
"all_bert_features": all_bert_features_batch,
"norm_text": norm_text_batch
}
_data.append(batch)
return _data, batch_index_list
def recovery_order(self, data: list, batch_index_list: list) -> list:
'''
Recovery the order of the audio according to the batch_index_list.
Args:
data (List[list(np.ndarray)]): the out of order audio .
batch_index_list (List[list[int]]): the batch index list.
Returns:
list (List[np.ndarray]): the data in the original order.
'''
lenght = len(sum(batch_index_list, []))
_data = [None] * lenght
for i, index_list in enumerate(batch_index_list):
for j, index in enumerate(index_list):
_data[index] = data[i][j]
return _data
def audio_postprocess(self, audio: List[torch.Tensor], sr: int, batch_index_list: list = None,
speed_factor: float = 1.0, split_bucket: bool = True) -> tuple[int, np.ndarray]:
zero_wav = torch.zeros(
int(self.sampling_rate * 0.3),
dtype=torch.float16 if self.is_half else torch.float32,
device=self.device
)
for i, batch in enumerate(audio):
for j, audio_fragment in enumerate(batch):
max_audio = torch.abs(audio_fragment).max() # 简单防止16bit爆音
if max_audio > 1: audio_fragment /= max_audio
audio_fragment: torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
audio[i][j] = audio_fragment.cpu().numpy()
if split_bucket:
audio = self.recovery_order(audio, batch_index_list)
else:
# audio = [item for batch in audio for item in batch]
audio = sum(audio, [])
audio = np.concatenate(audio, 0)
try:
if speed_factor != 1.0:
audio = self.speed_change(audio, speed_factor=speed_factor, sr=int(sr))
except Exception as e:
logging.error(f"Failed to change speed of audio: \n{e}")
return audio
def speed_change(self, input_audio: np.ndarray, speed_factor: float, sr: int):
# 变速处理
processed_audio = librosa.effects.time_stretch(input_audio, rate=speed_factor)
return processed_audio
def infer(self, text, lang, reference_audio, reference_audio_sr, prompt_text, prompt_lang, top_k, top_p,
temperature, batch_size: int = 5, batch_threshold: float = 0.75, split_bucket: bool = True,
return_fragment: bool = False, speed_factor: float = 1.0,
segment_size: int = config.gpt_sovits_config.segment_size, **kwargs):
if return_fragment:
split_bucket = False
data = self.preprocess_text(text, lang, segment_size)
no_prompt_text = False
if check_is_none(prompt_text):
no_prompt_text = True
else:
self.preprocess_prompt(reference_audio, reference_audio_sr, prompt_text, prompt_lang)
data, batch_index_list = self.to_batch(data,
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=split_bucket
)
audio = []
for item in data:
batch_phones = item["phones"]
batch_phones_len = item["phones_len"]
all_phoneme_ids = item["all_phones"]
all_phoneme_lens = item["all_phones_len"]
all_bert_features = item["all_bert_features"]
norm_text = item["norm_text"]
# batch_phones = batch_phones.to(self.device)
batch_phones_len = batch_phones_len.to(self.device)
all_phoneme_ids = all_phoneme_ids.to(self.device)
all_phoneme_lens = all_phoneme_lens.to(self.device)
all_bert_features = all_bert_features.to(self.device)
if self.is_half:
all_bert_features = all_bert_features.half()
logging.debug(f"Infer text:{[''.join(text) for text in norm_text]}")
if no_prompt_text:
prompt = None
else:
prompt = self.prompt_cache["prompt_semantic"].expand(all_phoneme_ids.shape[0], -1).to(
self.device)
with torch.no_grad():
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_lens,
prompt,
all_bert_features,
# prompt_phone_len=ph_offset,
top_k=top_k,
top_p=top_p,
temperature=temperature,
early_stop_num=self.hz * self.max_sec,
)
refer_audio_spepc: torch.Tensor = self.prompt_cache["refer_spepc"].to(self.device)
if self.is_half:
refer_audio_spepc = refer_audio_spepc.half()
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
upsample_rate = math.prod(self.vq_model.upsample_rates)
audio_frag_idx = [pred_semantic_list[i].shape[0] * 2 * upsample_rate for i in
range(0, len(pred_semantic_list))]
audio_frag_end_idx = [sum(audio_frag_idx[:i + 1]) for i in range(0, len(audio_frag_idx))]
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.device)
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.device)
_batch_audio_fragment = (self.vq_model.decode(
all_pred_semantic, _batch_phones, refer_audio_spepc
).detach()[0, 0, :])
audio_frag_end_idx.insert(0, 0)
batch_audio_fragment = [_batch_audio_fragment[audio_frag_end_idx[i - 1]:audio_frag_end_idx[i]] for i in
range(1, len(audio_frag_end_idx))]
torch.cuda.empty_cache()
if return_fragment:
yield self.audio_postprocess([batch_audio_fragment],
reference_audio_sr,
batch_index_list,
speed_factor,
split_bucket)
else:
audio.append(batch_audio_fragment)
if not return_fragment:
yield self.audio_postprocess(audio,
reference_audio_sr,
batch_index_list,
speed_factor,
split_bucket)
|