File size: 22,985 Bytes
1c9751a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import logging
import math
import os.path
import re
from typing import List

import librosa
import numpy as np
import torch
from time import time as ttime

from contants import config
from gpt_sovits.AR.models.t2s_lightning_module import Text2SemanticLightningModule
from gpt_sovits.module.mel_processing import spectrogram_torch
from gpt_sovits.module.models import SynthesizerTrn
from gpt_sovits.utils import DictToAttrRecursive
from gpt_sovits.text import cleaned_text_to_sequence
from gpt_sovits.text.cleaner import clean_text
from utils.classify_language import classify_language
from utils.data_utils import check_is_none
from utils.sentence import split_languages, sentence_split

splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }


class GPT_SoVITS:
    def __init__(self, sovits_path, gpt_path, device, **kwargs):
        self.sovits_path = sovits_path
        self.gpt_path = gpt_path
        self.hz = config.gpt_sovits_config.hz
        self.sampling_rate = None
        self.device = device
        self.model_handler = None
        self.is_half = config.gpt_sovits_config.is_half
        self.np_dtype = np.float16 if self.is_half else np.float32
        self.torch_dtype = torch.float16 if self.is_half else torch.float32
        self.speakers = None
        self.lang = ["zh", "ja", "en"]
        self.flash_attn_enabled = True
        self.prompt_cache: dict = {
            "ref_audio_path": None,
            "prompt_semantic": None,
            "refer_spepc": None,
            "prompt_text": None,
            "prompt_lang": None,
            "phones": None,
            "bert_features": None,
            "norm_text": None,
        }

    def load_model(self, model_handler):
        self.model_handler = model_handler

        self.load_sovits(self.sovits_path)
        self.load_gpt(self.gpt_path)

        self.tokenizer, self.bert_model = self.model_handler.get_bert_model("CHINESE_ROBERTA_WWM_EXT_LARGE")

        self.ssl_model = self.model_handler.get_ssl_model()

    def load_weight(self, saved_state_dict, model):
        if hasattr(model, 'module'):
            state_dict = model.module.state_dict()
        else:
            state_dict = model.state_dict()
        new_state_dict = {}
        for k, v in state_dict.items():
            try:
                new_state_dict[k] = saved_state_dict[k]
            except:
                # logging.info(f"{k} is not in the checkpoint")
                new_state_dict[k] = v
        if hasattr(model, 'module'):
            model.module.load_state_dict(new_state_dict)
        else:
            model.load_state_dict(new_state_dict)

    def load_sovits(self, sovits_path):
        # self.n_semantic = 1024
        logging.info(f"Loaded checkpoint '{sovits_path}'")
        dict_s2 = torch.load(sovits_path, map_location=self.device)
        self.hps = dict_s2["config"]
        self.hps = DictToAttrRecursive(self.hps)
        self.hps.model.semantic_frame_rate = "25hz"
        # self.speakers = [self.hps.get("name")] # 从模型配置中获取名字
        self.speakers = [os.path.basename(os.path.dirname(self.sovits_path))]  # 用模型文件夹作为名字

        self.vq_model = SynthesizerTrn(
            self.hps.data.filter_length // 2 + 1,
            self.hps.train.segment_size // self.hps.data.hop_length,
            n_speakers=self.hps.data.n_speakers,
            **self.hps.model).to(self.device)

        if config.gpt_sovits_config.is_half:
            self.vq_model = self.vq_model.half()

        self.vq_model.eval()
        self.sampling_rate = self.hps.data.sampling_rate

        self.load_weight(dict_s2['weight'], self.vq_model)

    def load_gpt(self, gpt_path):
        logging.info(f"Loaded checkpoint '{gpt_path}'")
        dict_s1 = torch.load(gpt_path, map_location=self.device)

        self.gpt_config = dict_s1["config"]
        self.max_sec = self.gpt_config.get("data").get("max_sec")

        self.t2s_model = Text2SemanticLightningModule(self.gpt_config, "****", is_train=False,
                                                      flash_attn_enabled=self.flash_attn_enabled).to(
            self.device)

        self.load_weight(dict_s1['weight'], self.t2s_model)

        if config.gpt_sovits_config.is_half:
            self.t2s_model = self.t2s_model.half()

        self.t2s_model.eval()

        total = sum([param.nelement() for param in self.t2s_model.parameters()])
        logging.info(f"Number of parameter: {total / 1e6:.2f}M")

    def get_speakers(self):
        return self.speakers

    def get_cleaned_text(self, text, language):
        phones, word2ph, norm_text = clean_text(text, language.replace("all_", ""))
        phones = cleaned_text_to_sequence(phones)
        return phones, word2ph, norm_text

    def get_cleaned_text_multilang(self, text):
        sentences = split_languages(text, expand_abbreviations=True, expand_hyphens=True)
        phones, word2ph, norm_text = [], [], []
        for sentence, lang in sentences:
            lang = classify_language(sentence)
            _phones, _word2ph, _norm_text = self.get_cleaned_text(sentence, lang)
            phones.extend(_phones)
            word2ph.extend(_word2ph)
            norm_text.extend(_norm_text)

        return phones, word2ph, norm_text

    def get_bert_feature(self, text, phones, word2ph, language):
        if language == "zh":
            with torch.no_grad():
                inputs = self.tokenizer(text, return_tensors="pt")
                for i in inputs:
                    inputs[i] = inputs[i].to(self.device)  #####输入是long不用管精度问题,精度随bert_model
                res = self.bert_model(**inputs, output_hidden_states=True)
                res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
            assert len(word2ph) == len(text)
            phone_level_feature = []
            for i in range(len(word2ph)):
                repeat_feature = res[i].repeat(word2ph[i], 1)
                phone_level_feature.append(repeat_feature)
            phone_level_feature = torch.cat(phone_level_feature, dim=0)
            # if(config.gpt_sovits_config.is_half==True):phone_level_feature=phone_level_feature.half()
            bert = phone_level_feature.T
            torch.cuda.empty_cache()
        else:
            bert = torch.zeros((1024, len(phones)), dtype=self.torch_dtype)

        return bert

    def get_bert_and_cleaned_text_multilang(self, text: list):
        sentences = split_languages(text, expand_abbreviations=True, expand_hyphens=True)

        phones, word2ph, norm_text, bert = [], [], [], []

        for sentence, lang in sentences:
            _phones, _word2ph, _norm_text = self.get_cleaned_text(sentence, lang)
            _bert = self.get_bert_feature(sentence, _phones, _word2ph, _norm_text)
            phones.extend(_phones)
            if _word2ph is not None:
                word2ph.extend(_word2ph)
            norm_text.extend(_norm_text)
            bert.append(_bert)

        bert = torch.cat(bert, dim=1).to(self.device, dtype=self.torch_dtype)

        return phones, word2ph, norm_text, bert

    def get_spepc(self, audio, orig_sr):
        """audio的sampling_rate与模型相同"""
        audio = librosa.resample(audio, orig_sr=orig_sr, target_sr=int(self.hps.data.sampling_rate))
        audio = torch.FloatTensor(audio)
        audio_norm = audio
        audio_norm = audio_norm.unsqueeze(0)
        spec = spectrogram_torch(
            audio_norm,
            self.hps.data.filter_length,
            self.hps.data.sampling_rate,
            self.hps.data.hop_length,
            self.hps.data.win_length,
            center=False,
        )
        return spec

    def _set_prompt_semantic(self, reference_audio, reference_audio_sr):
        zero_wav = np.zeros(
            int(self.sampling_rate * 0.3),
            dtype=np.float16 if self.is_half else np.float32,
        )
        wav16k = librosa.resample(reference_audio, orig_sr=reference_audio_sr, target_sr=16000)
        with torch.no_grad():
            if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
                raise OSError("参考音频在3~10秒范围外,请更换!")
            wav16k = torch.from_numpy(wav16k)
            zero_wav_torch = torch.from_numpy(zero_wav)

            if self.is_half == True:
                wav16k = wav16k.half()
                zero_wav_torch = zero_wav_torch.half()

            wav16k = wav16k.to(self.device)
            zero_wav_torch = zero_wav_torch.to(self.device)

            wav16k = torch.cat([wav16k, zero_wav_torch]).unsqueeze(0)

            ssl_content = self.ssl_model.model(wav16k)[
                "last_hidden_state"
            ].transpose(
                1, 2
            )  # .float()
            codes = self.vq_model.extract_latent(ssl_content)
            prompt_semantic = codes[0, 0].to(self.device)
            # prompt_semantic = prompt_semantic.unsqueeze(0).to(self.device)
            self.prompt_cache["prompt_semantic"] = prompt_semantic
        torch.cuda.empty_cache()

    def get_first(self, text):
        pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
        text = re.split(pattern, text)[0].strip()
        return text

    def preprocess_text(self, text: str, lang: str, segment_size: int):
        texts = sentence_split(text, segment_size)

        result = []
        for text in texts:
            phones, word2ph, norm_text, bert_features = self.get_bert_and_cleaned_text_multilang(text)
            res = {
                "phones": phones,
                "bert_features": bert_features,
                "norm_text": norm_text,
            }
            result.append(res)
        return result

    def preprocess_prompt(self, reference_audio, reference_audio_sr, prompt_text: str, prompt_lang: str):
        if self.prompt_cache.get("prompt_text") != prompt_text:
            if prompt_lang.lower() == "auto":
                prompt_lang = classify_language(prompt_text)

            if (prompt_text[-1] not in splits):
                prompt_text += "。" if prompt_lang != "en" else "."
            phones, word2ph, norm_text = self.get_cleaned_text(prompt_text, prompt_lang)
            bert_features = self.get_bert_feature(norm_text, phones, word2ph, prompt_lang).to(self.device,
                                                                                              dtype=self.torch_dtype)
            self.prompt_cache["prompt_text"] = prompt_text
            self.prompt_cache["prompt_lang"] = prompt_lang
            self.prompt_cache["phones"] = phones
            self.prompt_cache["bert_features"] = bert_features
            self.prompt_cache["norm_text"] = norm_text
            self.prompt_cache["refer_spepc"] = self.get_spepc(reference_audio, orig_sr=reference_audio_sr)

            self._set_prompt_semantic(reference_audio, reference_audio_sr)

    def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length: int = None):
        seq = sequences[0]
        ndim = seq.dim()
        if axis < 0:
            axis += ndim
        dtype: torch.dtype = seq.dtype
        pad_value = torch.tensor(pad_value, dtype=dtype)
        seq_lengths = [seq.shape[axis] for seq in sequences]
        if max_length is None:
            max_length = max(seq_lengths)
        else:
            max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length

        padded_sequences = []
        for seq, length in zip(sequences, seq_lengths):
            padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
            padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value)
            padded_sequences.append(padded_seq)
        batch = torch.stack(padded_sequences)
        return batch

    def to_batch(self, data: list, prompt_data: dict = None, batch_size: int = 5, threshold: float = 0.75,
                 split_bucket: bool = True):

        _data: list = []
        index_and_len_list = []
        for idx, item in enumerate(data):
            norm_text_len = len(item["norm_text"])
            index_and_len_list.append([idx, norm_text_len])

        batch_index_list = []
        if split_bucket:
            index_and_len_list.sort(key=lambda x: x[1])
            index_and_len_list = np.array(index_and_len_list, dtype=np.int64)

            batch_index_list_len = 0
            pos = 0
            while pos < index_and_len_list.shape[0]:
                # batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
                pos_end = min(pos + batch_size, index_and_len_list.shape[0])
                while pos < pos_end:
                    batch = index_and_len_list[pos:pos_end, 1].astype(np.float32)
                    score = batch[(pos_end - pos) // 2] / batch.mean()
                    if (score >= threshold) or (pos_end - pos == 1):
                        batch_index = index_and_len_list[pos:pos_end, 0].tolist()
                        batch_index_list_len += len(batch_index)
                        batch_index_list.append(batch_index)
                        pos = pos_end
                        break
                    pos_end = pos_end - 1

            assert batch_index_list_len == len(data)

        else:
            for i in range(len(data)):
                if i % batch_size == 0:
                    batch_index_list.append([])
                batch_index_list[-1].append(i)

        for batch_idx, index_list in enumerate(batch_index_list):
            item_list = [data[idx] for idx in index_list]
            phones_list = []
            phones_len_list = []
            # bert_features_list = []
            all_phones_list = []
            all_phones_len_list = []
            all_bert_features_list = []
            norm_text_batch = []
            bert_max_len = 0
            phones_max_len = 0
            for item in item_list:
                if prompt_data is not None:
                    all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)
                    all_phones = torch.LongTensor(prompt_data["phones"] + item["phones"])
                    phones = torch.LongTensor(item["phones"])
                    # norm_text = prompt_data["norm_text"]+item["norm_text"]
                else:
                    all_bert_features = item["bert_features"]
                    phones = torch.LongTensor(item["phones"])
                    all_phones = phones
                    # norm_text = item["norm_text"]

                bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
                phones_max_len = max(phones_max_len, phones.shape[-1])

                phones_list.append(phones)
                phones_len_list.append(phones.shape[-1])
                all_phones_list.append(all_phones)
                all_phones_len_list.append(all_phones.shape[-1])
                all_bert_features_list.append(all_bert_features)
                norm_text_batch.append(item["norm_text"])

            phones_batch = phones_list
            max_len = max(bert_max_len, phones_max_len)
            # phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
            all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
            all_bert_features_batch = torch.FloatTensor(len(item_list), 1024, max_len)
            all_bert_features_batch.zero_()

            for idx, item in enumerate(all_bert_features_list):
                if item != None:
                    all_bert_features_batch[idx, :, : item.shape[-1]] = item

            batch = {
                "phones": phones_batch,
                "phones_len": torch.LongTensor(phones_len_list),
                "all_phones": all_phones_batch,
                "all_phones_len": torch.LongTensor(all_phones_len_list),
                "all_bert_features": all_bert_features_batch,
                "norm_text": norm_text_batch
            }
            _data.append(batch)

        return _data, batch_index_list

    def recovery_order(self, data: list, batch_index_list: list) -> list:
        '''
        Recovery the order of the audio according to the batch_index_list.

        Args:
            data (List[list(np.ndarray)]): the out of order audio .
            batch_index_list (List[list[int]]): the batch index list.

        Returns:
            list (List[np.ndarray]): the data in the original order.
        '''
        lenght = len(sum(batch_index_list, []))
        _data = [None] * lenght
        for i, index_list in enumerate(batch_index_list):
            for j, index in enumerate(index_list):
                _data[index] = data[i][j]
        return _data

    def audio_postprocess(self, audio: List[torch.Tensor], sr: int, batch_index_list: list = None,
                          speed_factor: float = 1.0, split_bucket: bool = True) -> tuple[int, np.ndarray]:
        zero_wav = torch.zeros(
            int(self.sampling_rate * 0.3),
            dtype=torch.float16 if self.is_half else torch.float32,
            device=self.device
        )

        for i, batch in enumerate(audio):
            for j, audio_fragment in enumerate(batch):
                max_audio = torch.abs(audio_fragment).max()  # 简单防止16bit爆音
                if max_audio > 1: audio_fragment /= max_audio
                audio_fragment: torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
                audio[i][j] = audio_fragment.cpu().numpy()

        if split_bucket:
            audio = self.recovery_order(audio, batch_index_list)
        else:
            # audio = [item for batch in audio for item in batch]
            audio = sum(audio, [])

        audio = np.concatenate(audio, 0)

        try:
            if speed_factor != 1.0:
                audio = self.speed_change(audio, speed_factor=speed_factor, sr=int(sr))
        except Exception as e:
            logging.error(f"Failed to change speed of audio: \n{e}")

        return audio

    def speed_change(self, input_audio: np.ndarray, speed_factor: float, sr: int):
        # 变速处理
        processed_audio = librosa.effects.time_stretch(input_audio, rate=speed_factor)

        return processed_audio

    def infer(self, text, lang, reference_audio, reference_audio_sr, prompt_text, prompt_lang, top_k, top_p,
              temperature, batch_size: int = 5, batch_threshold: float = 0.75, split_bucket: bool = True,
              return_fragment: bool = False, speed_factor: float = 1.0,
              segment_size: int = config.gpt_sovits_config.segment_size, **kwargs):

        if return_fragment:
            split_bucket = False

        data = self.preprocess_text(text, lang, segment_size)

        no_prompt_text = False
        if check_is_none(prompt_text):
            no_prompt_text = True
        else:
            self.preprocess_prompt(reference_audio, reference_audio_sr, prompt_text, prompt_lang)

        data, batch_index_list = self.to_batch(data,
                                               prompt_data=self.prompt_cache if not no_prompt_text else None,
                                               batch_size=batch_size,
                                               threshold=batch_threshold,
                                               split_bucket=split_bucket
                                               )

        audio = []
        for item in data:
            batch_phones = item["phones"]
            batch_phones_len = item["phones_len"]
            all_phoneme_ids = item["all_phones"]
            all_phoneme_lens = item["all_phones_len"]
            all_bert_features = item["all_bert_features"]
            norm_text = item["norm_text"]

            # batch_phones = batch_phones.to(self.device)
            batch_phones_len = batch_phones_len.to(self.device)
            all_phoneme_ids = all_phoneme_ids.to(self.device)
            all_phoneme_lens = all_phoneme_lens.to(self.device)
            all_bert_features = all_bert_features.to(self.device)
            if self.is_half:
                all_bert_features = all_bert_features.half()

            logging.debug(f"Infer text:{[''.join(text) for text in norm_text]}")
            if no_prompt_text:
                prompt = None
            else:
                prompt = self.prompt_cache["prompt_semantic"].expand(all_phoneme_ids.shape[0], -1).to(
                    self.device)

            with torch.no_grad():
                pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
                    all_phoneme_ids,
                    all_phoneme_lens,
                    prompt,
                    all_bert_features,
                    # prompt_phone_len=ph_offset,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    early_stop_num=self.hz * self.max_sec,
                )

            refer_audio_spepc: torch.Tensor = self.prompt_cache["refer_spepc"].to(self.device)
            if self.is_half:
                refer_audio_spepc = refer_audio_spepc.half()

            pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
            upsample_rate = math.prod(self.vq_model.upsample_rates)
            audio_frag_idx = [pred_semantic_list[i].shape[0] * 2 * upsample_rate for i in
                              range(0, len(pred_semantic_list))]
            audio_frag_end_idx = [sum(audio_frag_idx[:i + 1]) for i in range(0, len(audio_frag_idx))]
            all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.device)
            _batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.device)
            _batch_audio_fragment = (self.vq_model.decode(
                all_pred_semantic, _batch_phones, refer_audio_spepc
            ).detach()[0, 0, :])
            audio_frag_end_idx.insert(0, 0)
            batch_audio_fragment = [_batch_audio_fragment[audio_frag_end_idx[i - 1]:audio_frag_end_idx[i]] for i in
                                    range(1, len(audio_frag_end_idx))]

            torch.cuda.empty_cache()

            if return_fragment:
                yield self.audio_postprocess([batch_audio_fragment],
                                             reference_audio_sr,
                                             batch_index_list,
                                             speed_factor,
                                             split_bucket)
            else:
                audio.append(batch_audio_fragment)

        if not return_fragment:
            yield self.audio_postprocess(audio,
                                         reference_audio_sr,
                                         batch_index_list,
                                         speed_factor,
                                         split_bucket)