vits-simple-api-bv2 / api_test.py
Artrajz's picture
init
1c9751a
raw
history blame
20.6 kB
import json
import re
import requests
import os
import time
import random
import string
from requests_toolbelt.multipart.encoder import MultipartEncoder
absolute_path = os.path.dirname(__file__)
base_url = "http://127.0.0.1:23456"
# 映射表
def voice_speakers():
url = f"{base_url}/voice/speakers"
res = requests.post(url=url)
json = res.json()
for i in json:
print(i)
for j in json[i]:
print(j)
return json
# 语音合成 voice vits
def voice_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50,
save_audio=True,
save_path=None):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"segment_size": str(segment_size)
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice/vits"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
def voice_vits_streaming(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50,
save_audio=True, save_path=None):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"segment_size": str(segment_size),
"streaming": 'True'
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
def voice_vits_streaming(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50,
save_path=None):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"segment_size": str(segment_size),
"streaming": 'True'
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice"
res = requests.post(url=url, data=m, headers=headers, stream=True)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
audio = res.content
def get_file_size_from_bytes(byte_data):
file_size_offset = 4
file_size_length = 4
try:
file_size_bytes = byte_data[file_size_offset:file_size_offset + file_size_length]
file_size = int.from_bytes(file_size_bytes, byteorder='little')
return file_size + 8
except IndexError:
return None
audio = None
p = 0
audio_size = None
audios = []
for chunk in res.iter_content(chunk_size=1024):
if audio is None:
audio = chunk
else:
audio += chunk
p += len(chunk)
if audio_size is not None:
if p >= audio_size:
p = p - audio_size
audios.append(audio[:audio_size])
audio = audio[audio_size:]
audio_size = get_file_size_from_bytes(audio)
else:
audio_size = get_file_size_from_bytes(audio)
for i, audio in enumerate(audios):
with open(f"{path[:-4]}-{i}.wav", "wb") as f:
f.write(audio)
print(f"{path[:-4]}-{i}.wav")
return path
# 语音转换 hubert-vits
def voice_hubert_vits(upload_path, id, format="wav", length=1, noise=0.667, noisew=0.8, save_audio=True,
save_path=None):
upload_name = os.path.basename(upload_path)
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg
with open(upload_path, 'rb') as upload_file:
fields = {
"upload": (upload_name, upload_file, upload_type),
"id": str(id),
"format": format,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice/hubert-vits"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
# 维度情感模型 w2v2-vits
def voice_w2v2_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50,
emotion=0,
save_audio=True, save_path=None):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"segment_size": str(segment_size),
"emotion": str(emotion)
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice/w2v2-vits"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
# 语音转换 同VITS模型内角色之间的音色转换
def voice_conversion(upload_path, original_id, target_id, save_audio=True, save_path=None):
upload_name = os.path.basename(upload_path)
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg
with open(upload_path, 'rb') as upload_file:
fields = {
"upload": (upload_name, upload_file, upload_type),
"original_id": str(original_id),
"target_id": str(target_id),
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice/conversion"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
def voice_ssml(ssml, save_audio=True, save_path=None):
fields = {
"ssml": ssml,
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice/ssml"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
def voice_dimensional_emotion(upload_path, save_audio=True,
save_path=None):
upload_name = os.path.basename(upload_path)
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg
with open(upload_path, 'rb') as upload_file:
fields = {
"upload": (upload_name, upload_file, upload_type),
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice/dimension-emotion"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
def vits_json(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50,
save_audio=True, save_path=None):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"segment_size": str(segment_size)
}
f = json.dumps(fields)
url = f"{base_url}/voice"
header = {"Content-Type": 'application/json'}
res = requests.post(url=url, data=f, headers=header)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
with open(path, "wb") as f:
f.write(res.content)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
# Bert_vits2
def voice_bert_vits2(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50,
sdp_ratio=0.2, save_audio=True, save_path=None):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"segment_size": str(segment_size),
"sdp_ratio": str(sdp_ratio)
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice/bert-vits2"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
# gpt_sovits
def voice_gpt_sovits(text, id=0, format="wav", lang="auto", preset=None, prompt_text=None, prompt_lang="auto",
segment_size=50, reference_audio=None, save_audio=True, save_path=None):
upload_name, upload_type, upload_file = None, None, None
if reference_audio is not None:
upload_name = os.path.basename(reference_audio)
upload_type = f'audio/{upload_name.split(".")[1]}'
with open(reference_audio, 'rb') as f:
upload_file = f.read()
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"segment_size": str(segment_size),
"preset": preset,
"reference_audio": (upload_name, upload_file, upload_type) if reference_audio else None,
"prompt_text": prompt_text,
"prompt_lang": prompt_lang
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice/gpt-sovits"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
# Reading
def voice_reading_get(text, in_model_type, in_id, nr_model_type, nr_id, format="wav", lang="auto", preset=None,
save_audio=True, save_path=None):
res = requests.get(
url=f"{base_url}/voice/reading?text={text}&in_model_type={in_model_type}&in_id={in_id}&preset={preset}&nr_model_type={nr_model_type}&nr_id={nr_id}&lang={lang}&format={format}")
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
with open(path, "wb") as f:
f.write(res.content)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
# Reading
def voice_reading_json(text, in_model_type, in_id, nr_model_type, nr_id, format="wav", lang="auto", preset=None,
save_audio=True, save_path=None):
fields = {
"text": text,
"in_model_type": in_model_type,
"in_id": str(in_id),
"nr_model_type": nr_model_type,
"nr_id": str(nr_id),
"format": format,
"lang": lang,
}
f = json.dumps(fields)
url = f"{base_url}/voice/reading"
header = {"Content-Type": 'application/json'}
res = requests.post(url=url, data=f, headers=header)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
with open(path, "wb") as f:
f.write(res.content)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
# Reading
def voice_reading(text, in_model_type, in_id, nr_model_type, nr_id, format="wav", lang="auto", preset=None,
save_audio=True, save_path=None):
fields = {
"text": text,
"in_model_type": in_model_type,
"in_id": str(in_id),
"nr_model_type": nr_model_type,
"nr_id": str(nr_id),
"format": format,
"lang": lang,
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base_url}/voice/reading"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
if save_path is not None:
path = os.path.join(save_path, fname)
else:
path = os.path.join(absolute_path, fname)
if save_audio:
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
return None
def test_interface(text):
error_num = 0
for i in range(100):
try:
time.sleep(1)
t1 = time.time()
voice_vits(text, format="wav", lang="zh", save_audio=False)
t2 = time.time()
print(f"{i}:len:{len(text)}耗时:{t2 - t1}")
except Exception as e:
error_num += 1
print(e)
print(f"error_num={error_num}")
if __name__ == '__main__':
cache_path = os.path.join(os.path.curdir, "cache")
text = "你好,こんにちは"
ssml = """
<speak lang="zh" format="mp3" length="1.2">
<voice id="0" model_type="GPT-SOVITS" preset="default">这几天心里颇不宁静。</voice>
<voice id="0" model_type="Bert-VITS2">今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。</voice>
<voice id="142">月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了;</voice>
<voice id="0" model_type="Bert-VITS2">妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。</voice>
<voice id="120">我悄悄地披了大衫,带上门出去。</voice><break time="2s"/>
<voice id="121">沿着荷塘,是一条曲折的小煤屑路。</voice>
<voice id="122">这是一条幽僻的路;白天也少人走,夜晚更加寂寞。</voice>
<voice id="123">荷塘四面,长着许多树,蓊蓊郁郁的。</voice>
<voice id="124">路的一旁,是些杨柳,和一些不知道名字的树。</voice>
<voice id="125">没有月光的晚上,这路上阴森森的,有些怕人。</voice>
<voice id="126">今晚却很好,虽然月光也还是淡淡的。</voice><break time="2s"/>
<voice id="127">路上只我一个人,背着手踱着。</voice>
<voice id="128">这一片天地好像是我的;我也像超出了平常的自己,到了另一个世界里。</voice>
<voice id="129">我爱热闹,也爱冷静;<break strength="x-weak"/>爱群居,也爱独处。</voice>
<voice id="130">像今晚上,一个人在这苍茫的月下,什么都可以想,什么都可以不想,便觉是个自由的人。</voice>
<voice id="131">白天里一定要做的事,一定要说的话,现在都可不理。</voice>
<voice id="132">这是独处的妙处,我且受用这无边的荷香月色好了。</voice>
</speak>
"""
# path = voice_vits(text, save_path=cache_path)
# path =voice_vits_streaming(text, save_path=cache_path)
# path = voice_w2v2_vits(text, save_path=cache_path)
# path = voice_conversion(path, 1, 3, save_path=cache_path)
# path = voice_hubert_vits(path, 0, save_path=cache_path)
# path = voice_dimensional_emotion(path, save_path=cache_path)
# path = voice_ssml(ssml, save_path=cache_path)
# path = voice_bert_vits2("你好", lang="zh", save_path=cache_path)
# path = voice_bert_vits2("こんにちは", lang="ja", save_path=cache_path)
# path = voice_gpt_sovits(text=text, id=2, preset="wz")
# path = voice_gpt_sovits(text=text, id=2, reference_audio=r"H:\git\vits-simple-api\data\reference_audio\wz_10068.wav",prompt_text="……嗯……大概、快上课的时候开始的。到这个程度的话,……半个小时吧?")
# os.system(path)
# text = "你好“你的修炼速度有些出乎我的意料”"
# path = voice_reading_json(text=text, in_model_type="GPT-SOVITS", preset="wz", in_id=2, nr_model_type="BERT-VITS2",
# nr_id=0)
# os.system(path)