Artrajz's picture
init
1c9751a
raw
history blame
4.81 kB
import torch
from torch import no_grad, LongTensor
import utils
from utils import get_hparams_from_file, lang_dict
from vits import commons
from vits.mel_processing import spectrogram_torch
from vits.text import text_to_sequence
from vits.models import SynthesizerTrn
class VITS:
def __init__(self, model_path, config, device="cpu", **kwargs):
self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config
self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0)
self.n_symbols = len(getattr(self.hps_ms, 'symbols', []))
self.speakers = getattr(self.hps_ms, 'speakers', ['0'])
if not isinstance(self.speakers, list):
self.speakers = [item[0] for item in sorted(list(self.speakers.items()), key=lambda x: x[1])]
self.bert_embedding = getattr(self.hps_ms.data, 'bert_embedding',
getattr(self.hps_ms.model, 'bert_embedding', False))
self.hps_ms.model.bert_embedding = self.bert_embedding
self.text_cleaners = getattr(self.hps_ms.data, 'text_cleaners', [None])[0]
self.sampling_rate = self.hps_ms.data.sampling_rate
self.device = device
self.model_path = model_path
# load checkpoint
# self.load_model()
self.lang = lang_dict.get(self.text_cleaners, ["unknown"])
def load_model(self):
self.net_g_ms = SynthesizerTrn(
self.n_symbols,
self.hps_ms.data.filter_length // 2 + 1,
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
n_speakers=self.n_speakers,
**self.hps_ms.model)
_ = self.net_g_ms.eval()
utils.load_checkpoint(self.model_path, self.net_g_ms)
self.net_g_ms.to(self.device)
def release_model(self):
del self.net_g_ms
def get_cleaned_text(self, text, hps, cleaned=False):
if cleaned:
text_norm = text_to_sequence(text, hps.symbols, [])
else:
if self.bert_embedding:
text_norm, char_embed = text_to_sequence(text, hps.symbols, hps.data.text_cleaners,
bert_embedding=self.bert_embedding)
text_norm = LongTensor(text_norm)
return text_norm, char_embed
else:
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def infer(self, text, id, noise, noisew, length, cleaned=False, **kwargs):
char_embeds = None
if self.bert_embedding:
stn_tst, char_embeds = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
else:
stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
id = LongTensor([id])
with no_grad():
x_tst = stn_tst.unsqueeze(0).to(self.device)
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(self.device)
x_tst_prosody = torch.FloatTensor(char_embeds).unsqueeze(0).to(
self.device) if self.bert_embedding else None
id = id.to(self.device)
audio = self.net_g_ms.infer(x=x_tst,
x_lengths=x_tst_lengths,
sid=id,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
bert=x_tst_prosody)[0][0, 0].data.float().cpu().numpy()
torch.cuda.empty_cache()
return audio
def voice_conversion(self, audio_path, original_id, target_id):
audio = utils.load_audio_to_torch(
audio_path, self.sampling_rate)
y = audio.unsqueeze(0)
spec = spectrogram_torch(y, self.hps_ms.data.filter_length,
self.sampling_rate, self.hps_ms.data.hop_length,
self.hps_ms.data.win_length,
center=False)
spec_lengths = LongTensor([spec.size(-1)])
sid_src = LongTensor([original_id])
with no_grad():
sid_tgt = LongTensor([target_id])
audio = self.net_g_ms.voice_conversion(spec.to(self.device),
spec_lengths.to(self.device),
sid_src=sid_src.to(self.device),
sid_tgt=sid_tgt.to(self.device))[0][0, 0].data.cpu().float().numpy()
torch.cuda.empty_cache()
return audio