Spaces:
Sleeping
Sleeping
import librosa | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from transformers import Wav2Vec2Processor | |
from transformers.models.wav2vec2.modeling_wav2vec2 import ( | |
Wav2Vec2Model, | |
Wav2Vec2PreTrainedModel, | |
) | |
from contants import config | |
class RegressionHead(nn.Module): | |
r"""Classification head.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.final_dropout) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x = features | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class EmotionModel(Wav2Vec2PreTrainedModel): | |
r"""Speech emotion classifier.""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.wav2vec2 = Wav2Vec2Model(config) | |
self.classifier = RegressionHead(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_values, | |
): | |
outputs = self.wav2vec2(input_values) | |
hidden_states = outputs[0] | |
hidden_states = torch.mean(hidden_states, dim=1) | |
logits = self.classifier(hidden_states) | |
return hidden_states, logits | |
def process_func( | |
x: np.ndarray, | |
sampling_rate: int, | |
model: EmotionModel, | |
processor: Wav2Vec2Processor, | |
device: str, | |
embeddings: bool = False, | |
) -> np.ndarray: | |
r"""Predict emotions or extract embeddings from raw audio signal.""" | |
model = model.to(device) | |
y = processor(x, sampling_rate=sampling_rate) | |
y = y["input_values"][0] | |
y = torch.from_numpy(y).unsqueeze(0).to(device) | |
# run through model | |
with torch.no_grad(): | |
y = model(y)[0 if embeddings else 1] | |
# convert to numpy | |
y = y.detach().cpu().numpy() | |
return y | |
def get_emo(audio, emotion_model, processor): | |
wav, sr = librosa.load(audio, 16000) | |
device = config.system.device | |
return process_func( | |
np.expand_dims(wav, 0).astype(np.float), | |
sr, | |
emotion_model, | |
processor, | |
device, | |
embeddings=True, | |
).squeeze(0) | |