Spaces:
Running
Running
File size: 11,374 Bytes
dc13618 14e19a5 b0f5083 14e19a5 dc13618 14e19a5 dc13618 b0f5083 dc13618 b0f5083 dc13618 b0f5083 dc13618 14e19a5 dc13618 14e19a5 dc13618 b0f5083 14e19a5 b0f5083 14e19a5 dc13618 b0f5083 dc13618 b0f5083 dc13618 b0f5083 dc13618 b0f5083 dc13618 b0f5083 dc13618 b0f5083 dc13618 b0f5083 14e19a5 dc13618 b0f5083 dc13618 b0f5083 14e19a5 dc13618 b0f5083 dc13618 b0f5083 dc13618 b0f5083 dc13618 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import librosa
import re
import numpy as np
import torch
from torch import no_grad, LongTensor, inference_mode, FloatTensor
import utils
from contants import ModelType
from utils import get_hparams_from_file, lang_dict
from utils.sentence import sentence_split_and_markup
from vits import commons
from vits.mel_processing import spectrogram_torch
from vits.text import text_to_sequence
from vits.models import SynthesizerTrn
class VITS:
def __init__(self, model, config, additional_model=None, model_type=None, device=torch.device("cpu"), **kwargs):
self.model_type = model_type
self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config
self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0)
self.n_symbols = len(getattr(self.hps_ms, 'symbols', []))
self.speakers = getattr(self.hps_ms, 'speakers', ['0'])
if not isinstance(self.speakers, list):
self.speakers = [item[0] for item in sorted(list(self.speakers.items()), key=lambda x: x[1])]
self.use_f0 = getattr(self.hps_ms.data, 'use_f0', False)
self.emotion_embedding = getattr(self.hps_ms.data, 'emotion_embedding',
getattr(self.hps_ms.model, 'emotion_embedding', False))
self.bert_embedding = getattr(self.hps_ms.data, 'bert_embedding',
getattr(self.hps_ms.model, 'bert_embedding', False))
self.hps_ms.model.emotion_embedding = self.emotion_embedding
self.hps_ms.model.bert_embedding = self.bert_embedding
self.net_g_ms = SynthesizerTrn(
self.n_symbols,
self.hps_ms.data.filter_length // 2 + 1,
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
n_speakers=self.n_speakers,
**self.hps_ms.model)
_ = self.net_g_ms.eval()
self.device = device
key = getattr(self.hps_ms.data, "text_cleaners", ["none"])[0]
self.lang = lang_dict.get(key, ["unknown"])
# load model
self.load_model(model, additional_model)
def load_model(self, model, additional_model=None):
utils.load_checkpoint(model, self.net_g_ms)
self.net_g_ms.to(self.device)
if self.model_type == ModelType.HUBERT_VITS:
self.hubert = additional_model
elif self.model_type == ModelType.W2V2_VITS:
self.emotion_reference = additional_model
def get_cleaned_text(self, text, hps, cleaned=False):
if cleaned:
text_norm = text_to_sequence(text, hps.symbols, [])
else:
if self.bert_embedding:
text_norm, char_embed = text_to_sequence(text, hps.symbols, hps.data.text_cleaners,
bert_embedding=self.bert_embedding)
text_norm = LongTensor(text_norm)
return text_norm, char_embed
else:
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def get_cleaner(self):
return getattr(self.hps_ms.data, 'text_cleaners', [None])[0]
def get_speakers(self, escape=False):
return self.speakers
@property
def sampling_rate(self):
return self.hps_ms.data.sampling_rate
def infer(self, params):
with no_grad():
x_tst = params.get("stn_tst").unsqueeze(0).to(self.device)
x_tst_lengths = LongTensor([params.get("stn_tst").size(0)]).to(self.device)
x_tst_prosody = torch.FloatTensor(params.get("char_embeds")).unsqueeze(0).to(
self.device) if self.bert_embedding else None
sid = params.get("sid").to(self.device)
emotion = params.get("emotion").to(self.device) if self.emotion_embedding else None
audio = self.net_g_ms.infer(x=x_tst,
x_lengths=x_tst_lengths,
sid=sid,
noise_scale=params.get("noise_scale"),
noise_scale_w=params.get("noise_scale_w"),
length_scale=params.get("length_scale"),
emotion_embedding=emotion,
bert=x_tst_prosody)[0][0, 0].data.float().cpu().numpy()
torch.cuda.empty_cache()
return audio
def get_infer_param(self, length_scale, noise_scale, noise_scale_w, text=None, speaker_id=None, audio_path=None,
emotion=None, cleaned=False, f0_scale=1):
emo = None
char_embeds = None
if self.model_type != ModelType.HUBERT_VITS:
if self.bert_embedding:
stn_tst, char_embeds = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
else:
stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
sid = LongTensor([speaker_id])
if self.model_type == ModelType.W2V2_VITS:
# if emotion_reference.endswith('.npy'):
# emotion = np.load(emotion_reference)
# emotion = FloatTensor(emotion).unsqueeze(0)
# else:
# audio16000, sampling_rate = librosa.load(
# emotion_reference, sr=16000, mono=True)
# emotion = self.w2v2(audio16000, sampling_rate)[
# 'hidden_states']
# emotion_reference = re.sub(
# r'\..*$', '', emotion_reference)
# np.save(emotion_reference, emotion.squeeze(0))
# emotion = FloatTensor(emotion)
emo = torch.FloatTensor(self.emotion_reference[emotion]).unsqueeze(0)
elif self.model_type == ModelType.HUBERT_VITS:
if self.use_f0:
audio, sampling_rate = librosa.load(audio_path, sr=self.hps_ms.data.sampling_rate, mono=True)
audio16000 = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
else:
audio16000, sampling_rate = librosa.load(audio_path, sr=16000, mono=True)
with inference_mode():
units = self.hubert.units(FloatTensor(audio16000).unsqueeze(0).unsqueeze(0)).squeeze(0).numpy()
if self.use_f0:
f0 = librosa.pyin(audio,
sr=sampling_rate,
fmin=librosa.note_to_hz('C0'),
fmax=librosa.note_to_hz('C7'),
frame_length=1780)[0]
target_length = len(units[:, 0])
f0 = np.nan_to_num(np.interp(np.arange(0, len(f0) * target_length, len(f0)) / target_length,
np.arange(0, len(f0)), f0)) * f0_scale
units[:, 0] = f0 / 10
stn_tst = FloatTensor(units)
sid = LongTensor([speaker_id])
params = {"length_scale": length_scale, "noise_scale": noise_scale,
"noise_scale_w": noise_scale_w, "stn_tst": stn_tst,
"sid": sid, "emotion": emo, "char_embeds": char_embeds}
return params
def get_tasks(self, voice):
text = voice.get("text", None)
speaker_id = voice.get("id", 0)
length = voice.get("length", 1)
noise = voice.get("noise", 0.667)
noisew = voice.get("noisew", 0.8)
max = voice.get("max", 50)
lang = voice.get("lang", "auto")
speaker_lang = voice.get("speaker_lang", None)
audio_path = voice.get("audio_path", None)
emotion = voice.get("emotion", 0)
# 去除所有多余的空白字符
if text is not None: text = re.sub(r'\s+', ' ', text).strip()
tasks = []
if self.model_type == ModelType.VITS:
sentence_list = sentence_split_and_markup(text, max, lang, speaker_lang)
for sentence in sentence_list:
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length,
noise_scale=noise, noise_scale_w=noisew)
tasks.append(params)
elif self.model_type == ModelType.HUBERT_VITS:
params = self.get_infer_param(speaker_id=speaker_id, length_scale=length, noise_scale=noise,
noise_scale_w=noisew, audio_path=audio_path)
tasks.append(params)
elif self.model_type == ModelType.W2V2_VITS:
sentence_list = sentence_split_and_markup(text, max, lang, speaker_lang)
for sentence in sentence_list:
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length,
noise_scale=noise, noise_scale_w=noisew, emotion=emotion)
tasks.append(params)
else:
raise ValueError(f"Unsupported model type: {self.model_type}")
return tasks
def get_audio(self, voice, auto_break=False):
tasks = self.get_tasks(voice)
# 停顿0.75s,避免语音分段合成再拼接后的连接突兀
brk = np.zeros(int(0.75 * self.sampling_rate), dtype=np.int16)
audios = []
num_tasks = len(tasks)
for i, task in enumerate(tasks):
if auto_break and i < num_tasks - 1:
chunk = np.concatenate((self.infer(task), brk), axis=0)
else:
chunk = self.infer(task)
audios.append(chunk)
audio = np.concatenate(audios, axis=0)
return audio
def get_stream_audio(self, voice, auto_break=False):
tasks = self.get_tasks(voice)
brk = np.zeros(int(0.75 * 22050), dtype=np.int16)
for task in tasks:
if auto_break:
chunk = np.concatenate((self.infer(task), brk), axis=0)
else:
chunk = self.infer(task)
yield chunk
def voice_conversion(self, voice):
audio_path = voice.get("audio_path")
original_id = voice.get("original_id")
target_id = voice.get("target_id")
audio = utils.load_audio_to_torch(
audio_path, self.hps_ms.data.sampling_rate)
y = audio.unsqueeze(0)
spec = spectrogram_torch(y, self.hps_ms.data.filter_length,
self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length,
self.hps_ms.data.win_length,
center=False)
spec_lengths = LongTensor([spec.size(-1)])
sid_src = LongTensor([original_id])
with no_grad():
sid_tgt = LongTensor([target_id])
audio = self.net_g_ms.voice_conversion(spec.to(self.device),
spec_lengths.to(self.device),
sid_src=sid_src.to(self.device),
sid_tgt=sid_tgt.to(self.device))[0][0, 0].data.cpu().float().numpy()
torch.cuda.empty_cache()
return audio
|