Artrajz's picture
Upload 103 files
c5ed230
raw
history blame
5.94 kB
import os
import json
import logging
import config
import numpy as np
from utils.utils import check_is_none
from voice import vits, TTS
lang_dict = {
"english_cleaners": ["en"],
"english_cleaners2": ["en"],
"japanese_cleaners": ["ja"],
"japanese_cleaners2": ["ja"],
"korean_cleaners": ["ko"],
"chinese_cleaners": ["zh"],
"zh_ja_mixture_cleaners": ["zh", "ja"],
"sanskrit_cleaners": ["sa"],
"cjks_cleaners": ["zh", "ja", "ko", "sa"],
"cjke_cleaners": ["zh", "ja", "ko", "en"],
"cjke_cleaners2": ["zh", "ja", "ko", "en"],
"cje_cleaners": ["zh", "ja", "en"],
"thai_cleaners": ["th"],
"shanghainese_cleaners": ["sh"],
"chinese_dialect_cleaners": ["zh", "ja", "sh", "gd", "en", "SZ", "WX", "CZ", "HZ", "SX", "NB", "JJ", "YX", "JD",
"ZR", "PH", "TX", "JS", "HN", "LP", "XS", "FY", "RA", "CX", "SM", "TT", "WZ", "SC",
"YB"],
}
def analysis(model_config_json):
model_config = json.load(model_config_json)
symbols = model_config.get("symbols", None)
emotion_embedding = model_config.get("data").get("emotion_embedding", False)
if symbols != None:
if not emotion_embedding:
mode_type = "vits"
else:
mode_type = "w2v2"
else:
mode_type = "hubert-soft"
return mode_type
def load_npy(model_):
if isinstance(model_, list):
# check if is .npy
for i in model_:
_model_extention = os.path.splitext(i)[1]
if _model_extention != ".npy":
raise ValueError(f"Unsupported model type: {_model_extention}")
# merge npy files
emotion_reference = np.empty((0, 1024))
for i in model_:
tmp = np.load(i).reshape(-1, 1024)
emotion_reference = np.append(emotion_reference, tmp, axis=0)
elif os.path.isdir(model_):
emotion_reference = np.empty((0, 1024))
for root, dirs, files in os.walk(model_):
for file_name in files:
# check if is .npy
_model_extention = os.path.splitext(file_name)[1]
if _model_extention != ".npy":
continue
file_path = os.path.join(root, file_name)
# merge npy files
tmp = np.load(file_path).reshape(-1, 1024)
emotion_reference = np.append(emotion_reference, tmp, axis=0)
elif os.path.isfile(model_):
# check if is .npy
_model_extention = os.path.splitext(model_)[1]
if _model_extention != ".npy":
raise ValueError(f"Unsupported model type: {_model_extention}")
emotion_reference = np.load(model_)
logging.info(f"Loaded emotional dimention npy range:{len(emotion_reference)}")
return emotion_reference
def merge_model(merging_model):
vits_obj = []
vits_speakers = []
hubert_vits_obj = []
hubert_vits_speakers = []
w2v2_vits_obj = []
w2v2_vits_speakers = []
# model list
vits_list = []
hubert_vits_list = []
w2v2_vits_list = []
for l in merging_model:
with open(l[1], 'r', encoding='utf-8') as model_config:
model_type = analysis(model_config)
if model_type == "vits":
vits_list.append(l)
elif model_type == "hubert":
hubert_vits_list.append(l)
elif model_type == "w2v2":
w2v2_vits_list.append(l)
# merge vits
new_id = 0
for obj_id, i in enumerate(vits_list):
obj = vits(model=i[0], config=i[1], model_type="vits")
lang = lang_dict.get(obj.get_cleaner(), obj.get_cleaner())
for id, name in enumerate(obj.return_speakers()):
vits_obj.append([int(id), obj, obj_id])
vits_speakers.append({"id": new_id, "name": name, "lang": lang})
new_id += 1
# merge hubert-vits
if len(hubert_vits_list) != 0:
if getattr(config, "HUBERT_SOFT_MODEL", None) == None or check_is_none(config.HUBERT_SOFT_MODEL):
raise ValueError(f"Please configure HUBERT_SOFT_MODEL path in config.py")
try:
from hubert_model import hubert_soft
hubert = hubert_soft(config.HUBERT_SOFT_MODEL)
except Exception as e:
raise ValueError(f"Load HUBERT_SOFT_MODEL failed {e}")
new_id = 0
for obj_id, i in enumerate(hubert_vits_list):
obj = vits(model=i[0], config=i[1], model_=hubert, model_type="hubert")
lang = lang_dict.get(obj.get_cleaner(), obj.get_cleaner())
for id, name in enumerate(obj.return_speakers()):
hubert_vits_obj.append([int(id), obj, obj_id])
hubert_vits_speakers.append({"id": new_id, "name": name, "lang": lang})
new_id += 1
# merge w2v2-vits
if len(w2v2_vits_list) != 0:
if getattr(config, "DIMENSIONAL_EMOTION_NPY", None) == None or check_is_none(config.DIMENSIONAL_EMOTION_NPY):
raise ValueError(f"Please configure DIMENSIONAL_EMOTION_NPY path in config.py")
try:
emotion_reference = load_npy(config.DIMENSIONAL_EMOTION_NPY)
except Exception as e:
raise ValueError(f"Load DIMENSIONAL_EMOTION_NPY failed {e}")
new_id = 0
for obj_id, i in enumerate(w2v2_vits_list):
obj = vits(model=i[0], config=i[1], model_=emotion_reference, model_type="w2v2")
lang = lang_dict.get(obj.get_cleaner(), obj.get_cleaner())
for id, name in enumerate(obj.return_speakers()):
w2v2_vits_obj.append([int(id), obj, obj_id])
w2v2_vits_speakers.append({"id": new_id, "name": name, "lang": lang})
new_id += 1
voice_obj = {"VITS": vits_obj, "HUBERT-VITS": hubert_vits_obj, "W2V2-VITS": w2v2_vits_obj}
voice_speakers = {"VITS": vits_speakers, "HUBERT-VITS": hubert_vits_speakers, "W2V2-VITS": w2v2_vits_speakers}
tts = TTS(voice_obj, voice_speakers)
return tts