File size: 5,381 Bytes
fe1fc2e
467c73a
3c4de7d
bd26a11
 
 
 
 
8356c3c
bd26a11
 
 
467c73a
fe1fc2e
644332a
8356c3c
dfb65c1
4f834c9
a76c41e
 
b1fa38c
09d364f
 
10edf7a
7c9ee97
 
 
 
 
92bd8e5
7c9ee97
 
 
4b1699f
305c673
8e41c14
 
 
10edf7a
 
 
 
 
 
152b9b0
ca65ca1
152b9b0
dedb405
 
 
 
152b9b0
dedb405
 
 
 
152b9b0
0420d34
152b9b0
 
648f093
152b9b0
 
de0cc6e
 
af738e9
152b9b0
55deafd
de0cc6e
9ae7fa6
d1e59aa
 
 
 
 
 
152b9b0
d1e59aa
f9b8984
cd7cb8b
f9b8984
96515be
55e669b
 
d1e59aa
687dbd6
55e669b
43ca617
2bc8ef5
cd7cb8b
 
 
 
 
 
6a474c7
92bd8e5
443a65d
 
 
 
799176a
 
ce39389
799176a
443a65d
261a9b2
03d617b
261a9b2
9f3b8b8
 
4b1699f
687dbd6
 
e105e1e
8e41c14
 
 
 
 
 
2bc8ef5
 
 
922d7c8
3d410fb
687dbd6
 
9e61368
8e41c14
9e61368
 
687dbd6
9f3b8b8
fd0bd52
2bc8ef5
05d1ad8
dedb405
fe1fc2e
3c4de7d
c547536
8356c3c
92bd8e5
ab2f443
92bd8e5
8356c3c
 
8e29761
8356c3c
 
ca65ca1
2bc8ef5
8356c3c
 
fe1fc2e
05a609e
fe1fc2e
2bc8ef5
fe1fc2e
81c159a
fe8eb6d
5bd324a
815187b
10edf7a
815187b
c547536
152b9b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import streamlit as st
from dotenv import load_dotenv
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import llamacpp
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler
from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain
from langchain.document_loaders import TextLoader
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory
from langchain.prompts import PromptTemplate
from langchain.vectorstores import Chroma
from utills import load_txt_documents, split_docs, load_uploaded_documents, retriever_from_chroma
from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter
from langchain_community.document_loaders.directory import DirectoryLoader
from HTML_templates import css, bot_template, user_template
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain import hub
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor

lang_api_key = os.getenv("lang_api_key")

os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus"
os.environ["LANGCHAIN_API_KEY"] = lang_api_key
os.environ["LANGCHAIN_PROJECT"] = "Lithuanian_Law_RAG_QA"



def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=250, chunk_overlap=20):
    
    model_name = "Alibaba-NLP/gte-base-en-v1.5"
    model_kwargs = {'device': 'cpu',
                   "trust_remote_code" : 'True'}
    encode_kwargs = {'normalize_embeddings': True}
    embeddings = HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs
    )

    
    # Check if vectorstore exists
    #if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
     #   # Load the existing vectorstore
      #  vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
    #else:
        # Load documents from the specified data path
    loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
    docs = loader.load()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    split_docs = text_splitter.split_documents(docs)

        

        # Create the vectorstore
    vectorstore = Chroma.from_documents(
            documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path
        )
    
    
    retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})

    

    return retriever






def main():


    

    st.set_page_config(page_title="Lithuanian law documents RAG QA BOT ",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    
    st.header("Chat with multiple PDFs :books:")
    st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.")

    if "messages" not in st.session_state:
        st.session_state["messages"] = [
        {"role": "assistant", "content": "Hi, I'm a chatbot who is  based on respublic of Lithuania law documents. How can I help you?"}
    ]

    
    
    retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=12, chunk_size=300, chunk_overlap=20)
    if user_question := st.text_input("Ask a question about your documents:"):
        handle_userinput(user_question,retriever)
        
    
    
    
    
 
    
    

    


def handle_userinput(user_question,retriever):
    st.session_state.messages.append({"role": "user", "content": user_question})
    st.chat_message("user").write(user_question)
    docs = retriever.invoke(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        with st.spinner("Processing"):
            for doc in docs:
                st.write(f"Document: {doc}")
    
    doc_txt = [doc.page_content for doc in docs]
    
    rag_chain = create_conversational_rag_chain(retriever)
    response = rag_chain.invoke({"context": doc_txt, "question": user_question})
    st.session_state.messages.append({"role": "assistant", "content": response})
    st.chat_message("assistant").write(response)
    

                
            



def create_conversational_rag_chain(retriever):
    
    

    callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

    llm = llamacpp.LlamaCpp(
        model_path = "qwen2-0_5b-instruct-q8_0.gguf",
        n_gpu_layers=0,
        temperature=0.2,
        top_p=0.9,
        n_ctx=22000,
        n_batch=2000,
        max_tokens=200,
        repeat_penalty=1.7,
        last_n_tokens_size = 200,
        # callback_manager=callback_manager,
        verbose=False,
    )

    prompt = hub.pull("rlm/rag-prompt")

    rag_chain = prompt | llm | StrOutputParser()


    return rag_chain


 

if __name__ == "__main__":
    main()