ArturG9's picture
Update app.py
98c0504 verified
raw
history blame
6.35 kB
import os
import streamlit as st
from dotenv import load_dotenv
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import llamacpp
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler
from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain
from langchain.document_loaders import TextLoader
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory
from langchain.prompts import PromptTemplate
from langchain.vectorstores import Chroma
from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter
from langchain_community.document_loaders.directory import DirectoryLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
lang_api_key = os.getenv("lang_api_key")
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus"
os.environ["LANGCHAIN_API_KEY"] = lang_api_key
os.environ["LANGCHAIN_PROJECT"] = "Lithuanian_Law_RAG_QA"
def create_retriever_from_chroma(vectorstore_path="./docs/chroma/", search_type='mmr', k=7, chunk_size=300, chunk_overlap=30,lambda_mult= 0.7):
model_name = "Alibaba-NLP/gte-large-en-v1.5"
model_kwargs = {'device': 'cpu',
"trust_remote_code" : 'False'}
encode_kwargs = {'normalize_embeddings': True}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
# Check if vectorstore exists
if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
# Load the existing vectorstore
st.write("Vector store exists and is loaded")
vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
else:
st.write("Vector store doesnt exist and will be created now")
loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
docs = loader.load()
st.write("Docs loaded")
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size, chunk_overlap=chunk_overlap,
separators=["\n\n \n\n","\n\n\n", "\n\n", r"In \[[0-9]+\]", r"\n+", r"\s+"],
is_separator_regex = True
)
split_docs = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(
documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path
)
st.write("VectorStore is created")
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})
return retriever
def main():
st.set_page_config(page_title="Chat with multiple Lithuanian Law Documents: ",
page_icon=":books:")
st.header("Chat with multiple Lithuanian Law Documents:" ":books:")
st.markdown("Hi, I am Birute (Powered by qwen2-0_5b model), chat assistant, based on republic of Lithuania law documents. You can choose below information retrieval type and how many documents you want to be retrieved.")
st.markdown("Available Documents: LR_Civil_Code_2022, LR_Constitution_2022, LR_Criminal_Code_2018, LR_Criminal_Procedure_code_2022,LR_Labour_code_2010. P.S it's a shame that there are no newest documents translations into English... ")
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Hi, I'm a chatbot who is based on respublic of Lithuania law documents. How can I help you?"}
]
search_type = st.selectbox(
"Choose search type. Options are [Max marginal relevance search (similarity) , Similarity search (similarity). Default value (similarity)]",
options=["mmr", "similarity"],
index=1
)
k = st.select_slider(
"Select amount of documents to be retrieved. Default value (5): ",
options=list(range(2, 16)),
value=4
)
retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type=search_type, k=k, chunk_size=350, chunk_overlap=30)
rag_chain = create_conversational_rag_chain(retriever)
if user_question := st.text_input("Ask a question about your documents:"):
handle_userinput(user_question,retriever,rag_chain)
def handle_userinput(user_question,retriever,rag_chain):
st.session_state.messages.append({"role": "user", "content": user_question})
st.chat_message("user").write(user_question)
docs = retriever.get_relevant_documents(user_question)
with st.sidebar:
st.subheader("Your documents")
with st.spinner("Processing"):
for doc in docs:
st.write(f"Document: {doc}")
doc_txt = [doc.page_content for doc in docs]
response = rag_chain.invoke({"context": doc_txt, "question": user_question})
st.session_state.messages.append({"role": "assistant", "content": response})
st.chat_message("assistant").write(response)
def create_conversational_rag_chain(retriever):
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = llamacpp.LlamaCpp(
model_path = "JCHAVEROT_Qwen2-0.5B-Chat_SFT_DPO.Q8_0.gguf",
seed = 41,
n_gpu_layers=0,
temperature=0.0,
n_ctx=25000,
n_batch=2000,
max_tokens=200,
repeat_penalty=1.9,
last_n_tokens_size = 200,
callback_manager=callback_manager,
verbose=False,
)
template = """Answer the questio in a natural language, based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
rag_chain = prompt | llm | StrOutputParser()
return rag_chain
if __name__ == "__main__":
main()