|
import os |
|
import streamlit as st |
|
from dotenv import load_dotenv |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import llamacpp |
|
from langchain_core.runnables.history import RunnableWithMessageHistory |
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler |
|
from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain |
|
from langchain.document_loaders import TextLoader |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory |
|
from langchain.prompts import PromptTemplate |
|
from langchain.vectorstores import Chroma |
|
from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter |
|
from langchain_community.document_loaders.directory import DirectoryLoader |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.runnables import RunnablePassthrough |
|
|
|
|
|
lang_api_key = os.getenv("lang_api_key") |
|
|
|
os.environ["LANGCHAIN_TRACING_V2"] = "true" |
|
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus" |
|
os.environ["LANGCHAIN_API_KEY"] = lang_api_key |
|
os.environ["LANGCHAIN_PROJECT"] = "Lithuanian_Law_RAG_QA" |
|
|
|
|
|
|
|
|
|
|
|
def create_retriever_from_chroma(vectorstore_path="./docs/chroma/", search_type='mmr', k=7, chunk_size=300, chunk_overlap=30,lambda_mult= 0.7): |
|
|
|
model_name = "Alibaba-NLP/gte-large-en-v1.5" |
|
model_kwargs = {'device': 'cpu', |
|
"trust_remote_code" : 'False'} |
|
encode_kwargs = {'normalize_embeddings': True} |
|
embeddings = HuggingFaceEmbeddings( |
|
model_name=model_name, |
|
model_kwargs=model_kwargs, |
|
encode_kwargs=encode_kwargs |
|
) |
|
|
|
|
|
|
|
if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path): |
|
|
|
st.write("Vector store exists and is loaded") |
|
vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings) |
|
|
|
else: |
|
st.write("Vector store doesnt exist and will be created now") |
|
loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader) |
|
docs = loader.load() |
|
st.write("Docs loaded") |
|
|
|
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( |
|
chunk_size=chunk_size, chunk_overlap=chunk_overlap, |
|
separators=["\n\n \n\n","\n\n\n", "\n\n", r"In \[[0-9]+\]", r"\n+", r"\s+"], |
|
is_separator_regex = True |
|
) |
|
split_docs = text_splitter.split_documents(docs) |
|
|
|
|
|
vectorstore = Chroma.from_documents( |
|
documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path |
|
) |
|
st.write("VectorStore is created") |
|
|
|
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k}) |
|
|
|
|
|
|
|
|
|
return retriever |
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
st.set_page_config(page_title="Chat with multiple Lithuanian Law Documents: ", |
|
page_icon=":books:") |
|
|
|
|
|
st.header("Chat with multiple Lithuanian Law Documents:" ":books:") |
|
|
|
st.markdown("Hi, I am Birute (Powered by qwen2-0_5b model), chat assistant, based on republic of Lithuania law documents. You can choose below information retrieval type and how many documents you want to be retrieved.") |
|
st.markdown("Available Documents: LR_Civil_Code_2022, LR_Constitution_2022, LR_Criminal_Code_2018, LR_Criminal_Procedure_code_2022,LR_Labour_code_2010. P.S it's a shame that there are no newest documents translations into English... ") |
|
|
|
if "messages" not in st.session_state: |
|
st.session_state["messages"] = [ |
|
{"role": "assistant", "content": "Hi, I'm a chatbot who is based on respublic of Lithuania law documents. How can I help you?"} |
|
] |
|
|
|
|
|
search_type = st.selectbox( |
|
"Choose search type. Options are [Max marginal relevance search (similarity) , Similarity search (similarity). Default value (similarity)]", |
|
options=["mmr", "similarity"], |
|
index=1 |
|
) |
|
|
|
k = st.select_slider( |
|
"Select amount of documents to be retrieved. Default value (5): ", |
|
options=list(range(2, 16)), |
|
value=4 |
|
) |
|
retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type=search_type, k=k, chunk_size=350, chunk_overlap=30) |
|
|
|
|
|
|
|
rag_chain = create_conversational_rag_chain(retriever) |
|
|
|
|
|
if user_question := st.text_input("Ask a question about your documents:"): |
|
handle_userinput(user_question,retriever,rag_chain) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def handle_userinput(user_question,retriever,rag_chain): |
|
st.session_state.messages.append({"role": "user", "content": user_question}) |
|
st.chat_message("user").write(user_question) |
|
docs = retriever.get_relevant_documents(user_question) |
|
|
|
with st.sidebar: |
|
st.subheader("Your documents") |
|
with st.spinner("Processing"): |
|
for doc in docs: |
|
st.write(f"Document: {doc}") |
|
|
|
doc_txt = [doc.page_content for doc in docs] |
|
|
|
|
|
response = rag_chain.invoke({"context": doc_txt, "question": user_question}) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
st.chat_message("assistant").write(response) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_conversational_rag_chain(retriever): |
|
|
|
|
|
|
|
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) |
|
|
|
llm = llamacpp.LlamaCpp( |
|
model_path = "JCHAVEROT_Qwen2-0.5B-Chat_SFT_DPO.Q8_0.gguf", |
|
seed = 41, |
|
n_gpu_layers=0, |
|
temperature=0.0, |
|
n_ctx=25000, |
|
n_batch=2000, |
|
max_tokens=200, |
|
repeat_penalty=1.9, |
|
last_n_tokens_size = 200, |
|
callback_manager=callback_manager, |
|
verbose=False, |
|
) |
|
|
|
template = """Answer the questio in a natural language, based only on the following context: |
|
{context} |
|
Question: {question} |
|
""" |
|
|
|
prompt = ChatPromptTemplate.from_template(template) |
|
|
|
|
|
|
|
|
|
rag_chain = prompt | llm | StrOutputParser() |
|
|
|
|
|
return rag_chain |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |