import os import streamlit as st from dotenv import load_dotenv from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import llamacpp from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain from langchain.document_loaders import TextLoader from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory from langchain.prompts import PromptTemplate from langchain.vectorstores import Chroma from utills import load_txt_documents, split_docs, load_uploaded_documents, retriever_from_chroma from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter from langchain_community.document_loaders.directory import DirectoryLoader from HTML_templates import css, bot_template, user_template from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain import hub from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor lang_api_key = os.getenv("lang_api_key") os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus" os.environ["LANGCHAIN_API_KEY"] = lang_api_key os.environ["LANGCHAIN_PROJECT"] = "Chat with multiple PDFs" def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=250, chunk_overlap=20): model_name = "Alibaba-NLP/gte-base-en-v1.5" model_kwargs = {'device': 'cpu', "trust_remote_code" : 'True'} encode_kwargs = {'normalize_embeddings': True} embeddings = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) llm = llamacpp.LlamaCpp( model_path='qwen2-0_5b-instruct-q4_0.gguf', n_gpu_layers=0, temperature=0.1, top_p=0.9, n_ctx=22000, n_batch=2000, max_tokens=200, repeat_penalty=1.7, last_n_tokens_size = 1500, # callback_manager=callback_manager, verbose=False, ) # Check if vectorstore exists if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path): # Load the existing vectorstore vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings) else: # Load documents from the specified data path loader = DirectoryLoader('./data', glob="./*.txt", loader_cls=TextLoader) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) split_docs = text_splitter.split_documents(docs) # Create the vectorstore vectorstore = Chroma.from_documents( documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path ) retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k}) compressor = LLMChainExtractor.from_llm(llm) compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) return compression_retriever def main(): if "messages" not in st.session_state: st.session_state["messages"] = [ {"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"} ] st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") st.write(css, unsafe_allow_html=True) st.header("Chat with multiple PDFs :books:") st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.") retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=9, chunk_size=250, chunk_overlap=20) if user_question := st.text_input("Ask a question about your documents:"): handle_userinput(user_question,retriever) def handle_userinput(user_question,retriever): st.session_state.messages.append({"role": "user", "content": user_question}) st.chat_message("user").write(user_question) docs = retriever.invoke(user_question) with st.sidebar: st.subheader("Your documents") with st.spinner("Processing"): for doc in docs: st.write(f"Document: {doc}") doc_txt = [doc.page_content for doc in docs] rag_chain = create_conversational_rag_chain(retriever) response = rag_chain.invoke({"context": doc_txt, "question": user_question}) st.session_state.messages.append({"role": "assistant", "content": response}) st.chat_message("assistant").write(response) def create_conversational_rag_chain(retriever): model_path = ('qwen2-0_5b-instruct-q4_0.gguf') callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = llamacpp.LlamaCpp( model_path = "qwen2-0_5b-instruct-q4_0.gguf", n_gpu_layers=0, temperature=0.4, top_p=0.9, n_ctx=22000, n_batch=2000, max_tokens=200, repeat_penalty=1.7, last_n_tokens_size = 200, # callback_manager=callback_manager, verbose=False, ) prompt = hub.pull("rlm/rag-prompt") rag_chain = prompt | llm | StrOutputParser() return rag_chain if __name__ == "__main__": main()