import os import streamlit as st from dotenv import load_dotenv from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import llamacpp from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain from langchain.document_loaders import TextLoader from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory from langchain.prompts import PromptTemplate from langchain.vectorstores import Chroma from utills import load_txt_documents, split_docs, load_uploaded_documents, retriever_from_chroma from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter from langchain_community.document_loaders.directory import DirectoryLoader from HTML_templates import css, bot_template, user_template def retriever_from_chroma(docs, search_type, k): model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': True} embeddings = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) vectorstore_path = "docs/chroma/" if not os.path.exists(vectorstore_path): os.makedirs(vectorstore_path) vectorstore = Chroma.from_documents( documents=text_chunks, embedding=embeddings, persist_directory="docs/chroma/") retriever = vectordb.as_retriever(search_type=search_type, search_kwargs={"k": k}) return retriever data_path = "data" documents = [] for filename in os.listdir(data_path): if filename.endswith('.txt'): file_path = os.path.join(data_path, filename) documents = TextLoader(file_path).load() documents.extend(documents) docs = split_docs(documents, 250, 20) retriever = retriever_from_chroma(docs,'mmr',7) def main(retriever): st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple PDFs :books:") with st.chat_message("Assistant"): st.write("Hello my name is Robert, how can i help you? ") user_question = st.text_input("Ask a question about your documents:") with st.chat_message("User"): st.write(user_question) if user_question: handle_userinput(user_question,vectorstore) def handle_userinput(user_question,retriever): docs = retriever.invoke(question) doc_txt = [doc.page_content for doc in docs] Rag_chain = create_conversational_rag_chain(retriever) response = rag_chain.invoke({"context": doc_txt, "question": question}) with st.chat_message("Assistant"): st.write(response) def create_conversational_rag_chain(retriever): model_path = ('qwen2-0_5b-instruct-q4_0.gguf') callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = llamacpp.LlamaCpp( model_path=model_path, n_gpu_layers=1, temperature=0.1, top_p=0.9, n_ctx=22000, max_tokens=200, repeat_penalty=1.7, # callback_manager=callback_manager, verbose=False, ) template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) rag_chain = prompt | llm | StrOutputParser() return rag_chain if __name__ == "__main__": main(vectorstore)