File size: 6,957 Bytes
5472531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""Call API providers."""

from json import loads
import os
import random
import time

from fastchat.utils import build_logger
from fastchat.constants import WORKER_API_TIMEOUT


logger = build_logger("gradio_web_server", "gradio_web_server.log")


def openai_api_stream_iter(
    model_name,
    messages,
    temperature,
    top_p,
    max_new_tokens,
    api_base=None,
    api_key=None,
):
    import openai

    is_azure = False
    if "azure" in model_name:
        is_azure = True
        openai.api_type = "azure"
        openai.api_version = "2023-07-01-preview"
    else:
        openai.api_type = "open_ai"
        openai.api_version = None

    openai.api_base = api_base or "https://api.openai.com/v1"
    openai.api_key = api_key or os.environ["OPENAI_API_KEY"]
    if model_name == "gpt-4-turbo":
        model_name = "gpt-4-1106-preview"

    # Make requests
    gen_params = {
        "model": model_name,
        "prompt": messages,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    if is_azure:
        res = openai.ChatCompletion.create(
            engine=model_name,
            messages=messages,
            temperature=temperature,
            max_tokens=max_new_tokens,
            stream=True,
        )
    else:
        res = openai.ChatCompletion.create(
            model=model_name,
            messages=messages,
            temperature=temperature,
            max_tokens=max_new_tokens,
            stream=True,
        )
    text = ""
    for chunk in res:
        if len(chunk["choices"]) > 0:
            text += chunk["choices"][0]["delta"].get("content", "")
            data = {
                "text": text,
                "error_code": 0,
            }
            yield data


def anthropic_api_stream_iter(model_name, prompt, temperature, top_p, max_new_tokens):
    import anthropic

    c = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])

    # Make requests
    gen_params = {
        "model": model_name,
        "prompt": prompt,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    res = c.completions.create(
        prompt=prompt,
        stop_sequences=[anthropic.HUMAN_PROMPT],
        max_tokens_to_sample=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        model=model_name,
        stream=True,
    )
    text = ""
    for chunk in res:
        text += chunk.completion
        data = {
            "text": text,
            "error_code": 0,
        }
        yield data


def init_palm_chat(model_name):
    import vertexai  # pip3 install google-cloud-aiplatform
    from vertexai.preview.language_models import ChatModel
    from vertexai.preview.generative_models import GenerativeModel

    project_id = os.environ["GCP_PROJECT_ID"]
    location = "us-central1"
    vertexai.init(project=project_id, location=location)

    if model_name in ["palm-2"]:
        # According to release note, "chat-bison@001" is PaLM 2 for chat.
        # https://cloud.google.com/vertex-ai/docs/release-notes#May_10_2023
        model_name = "chat-bison@001"
        chat_model = ChatModel.from_pretrained(model_name)
        chat = chat_model.start_chat(examples=[])
    elif model_name in ["gemini-pro"]:
        model = GenerativeModel(model_name)
        chat = model.start_chat()
    return chat


def palm_api_stream_iter(model_name, chat, message, temperature, top_p, max_new_tokens):
    if model_name in ["gemini-pro"]:
        max_new_tokens = max_new_tokens * 2
    parameters = {
        "temperature": temperature,
        "top_p": top_p,
        "max_output_tokens": max_new_tokens,
    }
    gen_params = {
        "model": model_name,
        "prompt": message,
    }
    gen_params.update(parameters)
    if model_name == "palm-2":
        response = chat.send_message(message, **parameters)
    else:
        response = chat.send_message(message, generation_config=parameters, stream=True)

    logger.info(f"==== request ====\n{gen_params}")

    try:
        text = ""
        for chunk in response:
            text += chunk.text
            data = {
                "text": text,
                "error_code": 0,
            }
            yield data
    except Exception as e:
        logger.error(f"==== error ====\n{e}")
        yield {
            "text": f"**API REQUEST ERROR** Reason: {e}\nPlease try again or increase the number of max tokens.",
            "error_code": 1,
        }
        yield data


def ai2_api_stream_iter(
    model_name,
    messages,
    temperature,
    top_p,
    max_new_tokens,
    api_key=None,
    api_base=None,
):
    from requests import post

    # get keys and needed values
    ai2_key = api_key or os.environ.get("AI2_API_KEY")
    api_base = api_base or "https://inferd.allen.ai/api/v1/infer"
    model_id = "mod_01hhgcga70c91402r9ssyxekan"

    # Make requests
    gen_params = {
        "model": model_name,
        "prompt": messages,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    # AI2 uses vLLM, which requires that `top_p` be 1.0 for greedy sampling:
    # https://github.com/vllm-project/vllm/blob/v0.1.7/vllm/sampling_params.py#L156-L157
    if temperature == 0.0 and top_p < 1.0:
        raise ValueError("top_p must be 1 when temperature is 0.0")

    res = post(
        api_base,
        stream=True,
        headers={"Authorization": f"Bearer {ai2_key}"},
        json={
            "model_id": model_id,
            # This input format is specific to the Tulu2 model. Other models
            # may require different input formats. See the model's schema
            # documentation on InferD for more information.
            "input": {
                "messages": messages,
                "opts": {
                    "max_tokens": max_new_tokens,
                    "temperature": temperature,
                    "top_p": top_p,
                    "logprobs": 1,  # increase for more choices
                },
            },
        },
    )

    if res.status_code != 200:
        logger.error(f"unexpected response ({res.status_code}): {res.text}")
        raise ValueError("unexpected response from InferD", res)

    text = ""
    for line in res.iter_lines():
        if line:
            part = loads(line)
            if "result" in part and "output" in part["result"]:
                for t in part["result"]["output"]["text"]:
                    text += t
            else:
                logger.error(f"unexpected part: {part}")
                raise ValueError("empty result in InferD response")

            data = {
                "text": text,
                "error_code": 0,
            }
            yield data