File size: 19,293 Bytes
5472531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
"""Inference for FastChat models."""
import abc
import gc
import json
import math
import os
import sys
import time
from typing import Iterable, Optional, Dict
import warnings
import psutil
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LlamaTokenizer,
LlamaForCausalLM,
AutoModel,
AutoModelForSeq2SeqLM,
T5Tokenizer,
AutoConfig,
)
from transformers.generation.logits_process import (
LogitsProcessorList,
RepetitionPenaltyLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
from fastchat.conversation import get_conv_template, SeparatorStyle
from fastchat.model.model_adapter import (
load_model,
get_conversation_template,
get_generate_stream_function,
)
from fastchat.modules.awq import AWQConfig
from fastchat.modules.gptq import GptqConfig
from fastchat.modules.exllama import ExllamaConfig
from fastchat.modules.xfastertransformer import XftConfig
from fastchat.utils import is_partial_stop, is_sentence_complete, get_context_length
def prepare_logits_processor(
temperature: float, repetition_penalty: float, top_p: float, top_k: int
) -> LogitsProcessorList:
processor_list = LogitsProcessorList()
# TemperatureLogitsWarper doesn't accept 0.0, 1.0 makes it a no-op so we skip two cases.
if temperature >= 1e-5 and temperature != 1.0:
processor_list.append(TemperatureLogitsWarper(temperature))
if repetition_penalty > 1.0:
processor_list.append(RepetitionPenaltyLogitsProcessor(repetition_penalty))
if 1e-8 <= top_p < 1.0:
processor_list.append(TopPLogitsWarper(top_p))
if top_k > 0:
processor_list.append(TopKLogitsWarper(top_k))
return processor_list
@torch.inference_mode()
def generate_stream(
model,
tokenizer,
params: Dict,
device: str,
context_len: int,
stream_interval: int = 2,
judge_sent_end: bool = False,
):
if hasattr(model, "device"):
device = model.device
# Read parameters
prompt = params["prompt"]
print(prompt)
len_prompt = len(prompt)
# temperature = float(params.get("temperature", 1.0))
# repetition_penalty = float(params.get("repetition_penalty", 1.0))
# top_p = float(params.get("top_p", 1.0))
# top_k = int(params.get("top_k", -1)) # -1 means disable
# max_new_tokens = int(params.get("max_new_tokens", 256))
###ADD
#uncomment the original above, play params below
temperature = float(params.get("temperature", 0.5))
repetition_penalty = float(params.get("repetition_penalty", 1.2))
top_p = float(params.get("top_p", 0.8))
top_k = int(params.get("top_k", -1)) # -1 means disable
max_new_tokens = int(params.get("max_new_tokens", 400))
###ADD
print(temperature, repetition_penalty, top_p, top_k, max_new_tokens)
print(prompt)
logprobs = params.get("logprobs", None) # FIXME: Support logprobs>1.
echo = bool(params.get("echo", True))
stop_str = params.get("stop", None)
stop_token_ids = params.get("stop_token_ids", None) or []
if tokenizer.eos_token_id not in stop_token_ids:
stop_token_ids.append(tokenizer.eos_token_id)
logits_processor = prepare_logits_processor(
temperature, repetition_penalty, top_p, top_k
)
input_ids = tokenizer(prompt).input_ids
if model.config.is_encoder_decoder:
max_src_len = context_len
else: # truncate
max_src_len = context_len - max_new_tokens - 1
input_ids = input_ids[-max_src_len:]
output_ids = list(input_ids)
input_echo_len = len(input_ids)
if model.config.is_encoder_decoder:
if logprobs is not None: # FIXME: Support logprobs for encoder-decoder models.
raise NotImplementedError
encoder_output = model.encoder(
input_ids=torch.as_tensor([input_ids], device=device)
)[0]
start_ids = torch.as_tensor(
[[model.generation_config.decoder_start_token_id]],
dtype=torch.int64,
device=device,
)
else:
start_ids = torch.as_tensor([input_ids], device=device)
past_key_values = out = None
token_logprobs = [None] # The first token has no logprobs.
sent_interrupt = False
finish_reason = None
stopped = False
for i in range(max_new_tokens):
if i == 0: # prefill
if model.config.is_encoder_decoder:
out = model.decoder(
input_ids=start_ids,
encoder_hidden_states=encoder_output,
use_cache=True,
)
logits = model.lm_head(out[0])
else:
out = model(input_ids=start_ids, use_cache=True)
logits = out.logits
past_key_values = out.past_key_values
if logprobs is not None:
# Prefull logprobs for the prompt.
shift_input_ids = start_ids[..., 1:].contiguous()
shift_logits = logits[..., :-1, :].contiguous()
shift_logits = torch.log_softmax(shift_logits, dim=-1).tolist()
for label_id, logit in zip(
shift_input_ids[0].tolist(), shift_logits[0]
):
token_logprobs.append(logit[label_id])
else: # decoding
if model.config.is_encoder_decoder:
out = model.decoder(
input_ids=torch.as_tensor(
[[token] if not sent_interrupt else output_ids],
device=device,
),
encoder_hidden_states=encoder_output,
use_cache=True,
past_key_values=past_key_values if not sent_interrupt else None,
)
sent_interrupt = False
logits = model.lm_head(out[0])
else:
out = model(
input_ids=torch.as_tensor(
[[token] if not sent_interrupt else output_ids],
device=device,
),
use_cache=True,
past_key_values=past_key_values if not sent_interrupt else None,
)
sent_interrupt = False
logits = out.logits
past_key_values = out.past_key_values
if logits_processor:
if repetition_penalty > 1.0:
tmp_output_ids = torch.as_tensor([output_ids], device=logits.device)
else:
tmp_output_ids = None
last_token_logits = logits_processor(tmp_output_ids, logits[:, -1, :])[0]
else:
last_token_logits = logits[0, -1, :]
if device == "mps":
# Switch to CPU by avoiding some bugs in mps backend.
last_token_logits = last_token_logits.float().to("cpu")
if temperature < 1e-5 or top_p < 1e-8: # greedy
_, indices = torch.topk(last_token_logits, 2)
tokens = [int(index) for index in indices.tolist()]
else:
probs = torch.softmax(last_token_logits, dim=-1)
indices = torch.multinomial(probs, num_samples=2)
tokens = [int(token) for token in indices.tolist()]
token = tokens[0]
output_ids.append(token)
if logprobs is not None:
# Cannot use last_token_logits because logprobs is based on raw logits.
token_logprobs.append(
torch.log_softmax(logits[0, -1, :], dim=-1)[token].tolist()
)
if token in stop_token_ids:
stopped = True
else:
stopped = False
# Yield the output tokens
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
if echo:
tmp_output_ids = output_ids
rfind_start = len_prompt
else:
tmp_output_ids = output_ids[input_echo_len:]
rfind_start = 0
output = tokenizer.decode(
tmp_output_ids,
skip_special_tokens=True,
spaces_between_special_tokens=False,
clean_up_tokenization_spaces=True,
)
ret_logprobs = None
if logprobs is not None:
ret_logprobs = {
"text_offset": [],
"tokens": [
tokenizer.decode(token)
for token in (
output_ids if echo else output_ids[input_echo_len:]
)
],
"token_logprobs": token_logprobs
if echo
else token_logprobs[input_echo_len:],
"top_logprobs": [{}]
* len(token_logprobs if echo else token_logprobs[input_echo_len:]),
}
# Compute text_offset
curr_pos = 0
for text in ret_logprobs["tokens"]:
ret_logprobs["text_offset"].append(curr_pos)
curr_pos += len(text)
# TODO: For the issue of incomplete sentences interrupting output, apply a patch and others can also modify it to a more elegant way
if judge_sent_end and stopped and not is_sentence_complete(output):
if len(tokens) > 1:
token = tokens[1]
output_ids[-1] = token
else:
output_ids.pop()
stopped = False
sent_interrupt = True
partially_stopped = False
if stop_str:
if isinstance(stop_str, str):
pos = output.rfind(stop_str, rfind_start)
if pos != -1:
output = output[:pos]
stopped = True
else:
partially_stopped = is_partial_stop(output, stop_str)
elif isinstance(stop_str, Iterable):
for each_stop in stop_str:
pos = output.rfind(each_stop, rfind_start)
if pos != -1:
output = output[:pos]
stopped = True
break
else:
partially_stopped = is_partial_stop(output, each_stop)
if partially_stopped:
break
else:
raise ValueError("Invalid stop field type.")
# Prevent yielding partial stop sequence
if not partially_stopped:
yield {
"text": output,
"logprobs": ret_logprobs,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": i,
"total_tokens": input_echo_len + i,
},
"finish_reason": None,
}
if stopped:
break
# Finish stream event, which contains finish reason
else:
finish_reason = "length"
if stopped:
finish_reason = "stop"
yield {
"text": output,
"logprobs": ret_logprobs,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": i,
"total_tokens": input_echo_len + i,
},
"finish_reason": finish_reason,
}
# Clean
del past_key_values, out
gc.collect()
torch.cuda.empty_cache()
if device == "xpu":
torch.xpu.empty_cache()
if device == "npu":
torch.npu.empty_cache()
class ChatIO(abc.ABC):
@abc.abstractmethod
def prompt_for_input(self, role: str) -> str:
"""Prompt for input from a role."""
@abc.abstractmethod
def prompt_for_output(self, role: str):
"""Prompt for output from a role."""
@abc.abstractmethod
def stream_output(self, output_stream):
"""Stream output."""
@abc.abstractmethod
def print_output(self, text: str):
"""Print output."""
def chat_loop(
model_path: str,
device: str,
num_gpus: int,
max_gpu_memory: str,
dtype: Optional[torch.dtype],
load_8bit: bool,
cpu_offloading: bool,
conv_template: Optional[str],
conv_system_msg: Optional[str],
temperature: float,
repetition_penalty: float,
max_new_tokens: int,
chatio: ChatIO,
gptq_config: Optional[GptqConfig] = None,
awq_config: Optional[AWQConfig] = None,
exllama_config: Optional[ExllamaConfig] = None,
xft_config: Optional[XftConfig] = None,
revision: str = "main",
judge_sent_end: bool = True,
debug: bool = True,
history: bool = True,
):
# Model
model, tokenizer = load_model(
model_path,
device=device,
num_gpus=num_gpus,
max_gpu_memory=max_gpu_memory,
dtype=dtype,
load_8bit=load_8bit,
cpu_offloading=cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
exllama_config=exllama_config,
xft_config=xft_config,
revision=revision,
debug=debug,
)
generate_stream_func = get_generate_stream_function(model, model_path)
model_type = str(type(model)).lower()
is_t5 = "t5" in model_type
is_codet5p = "codet5p" in model_type
is_xft = "xft" in model_type
# Hardcode T5's default repetition penalty to be 1.2
if is_t5 and repetition_penalty == 1.0:
repetition_penalty = 1.2
# Set context length
context_len = get_context_length(model.config)
# Chat
def new_chat():
if conv_template:
conv = get_conv_template(conv_template)
else:
conv = get_conversation_template(model_path)
if conv_system_msg is not None:
conv.set_system_message(conv_system_msg)
return conv
def reload_conv(conv):
"""
Reprints the conversation from the start.
"""
for message in conv.messages[conv.offset :]:
chatio.prompt_for_output(message[0])
chatio.print_output(message[1])
conv = None
while True:
if not history or not conv:
conv = new_chat()
try:
inp = chatio.prompt_for_input(conv.roles[0])
except EOFError:
inp = ""
if inp == "!!exit" or not inp:
print("exit...")
break
elif inp == "!!reset":
print("resetting...")
conv = new_chat()
continue
elif inp == "!!remove":
print("removing last message...")
if len(conv.messages) > conv.offset:
# Assistant
if conv.messages[-1][0] == conv.roles[1]:
conv.messages.pop()
# User
if conv.messages[-1][0] == conv.roles[0]:
conv.messages.pop()
reload_conv(conv)
else:
print("No messages to remove.")
continue
elif inp == "!!regen":
print("regenerating last message...")
if len(conv.messages) > conv.offset:
# Assistant
if conv.messages[-1][0] == conv.roles[1]:
conv.messages.pop()
# User
if conv.messages[-1][0] == conv.roles[0]:
reload_conv(conv)
# Set inp to previous message
inp = conv.messages.pop()[1]
else:
# Shouldn't happen in normal circumstances
print("No user message to regenerate from.")
continue
else:
print("No messages to regenerate.")
continue
elif inp.startswith("!!save"):
args = inp.split(" ", 1)
if len(args) != 2:
print("usage: !!save <filename>")
continue
else:
filename = args[1]
# Add .json if extension not present
if not "." in filename:
filename += ".json"
print("saving...", filename)
with open(filename, "w") as outfile:
json.dump(conv.dict(), outfile)
continue
elif inp.startswith("!!load"):
args = inp.split(" ", 1)
if len(args) != 2:
print("usage: !!load <filename>")
continue
else:
filename = args[1]
# Check if file exists and add .json if needed
if not os.path.exists(filename):
if (not filename.endswith(".json")) and os.path.exists(
filename + ".json"
):
filename += ".json"
else:
print("file not found:", filename)
continue
print("loading...", filename)
with open(filename, "r") as infile:
new_conv = json.load(infile)
conv = get_conv_template(new_conv["template_name"])
conv.set_system_message(new_conv["system_message"])
conv.messages = new_conv["messages"]
reload_conv(conv)
continue
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if is_codet5p: # codet5p is a code completion model.
prompt = inp
gen_params = {
"model": model_path,
"prompt": prompt,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"max_new_tokens": max_new_tokens,
"stop": conv.stop_str,
"stop_token_ids": conv.stop_token_ids,
"echo": False,
}
try:
chatio.prompt_for_output(conv.roles[1])
output_stream = generate_stream_func(
model,
tokenizer,
gen_params,
device,
context_len=context_len,
judge_sent_end=judge_sent_end,
)
t = time.time()
outputs = chatio.stream_output(output_stream)
duration = time.time() - t
conv.update_last_message(outputs.strip())
if debug:
num_tokens = len(tokenizer.encode(outputs))
msg = {
"conv_template": conv.name,
"prompt": prompt,
"outputs": outputs,
"speed (token/s)": round(num_tokens / duration, 2),
}
print(f"\n{msg}\n")
except KeyboardInterrupt:
print("stopped generation.")
# If generation didn't finish
if conv.messages[-1][1] is None:
conv.messages.pop()
# Remove last user message, so there isn't a double up
if conv.messages[-1][0] == conv.roles[0]:
conv.messages.pop()
reload_conv(conv)
|