File size: 19,293 Bytes
5472531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
"""Inference for FastChat models."""
import abc
import gc
import json
import math
import os
import sys
import time
from typing import Iterable, Optional, Dict
import warnings

import psutil
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    LlamaTokenizer,
    LlamaForCausalLM,
    AutoModel,
    AutoModelForSeq2SeqLM,
    T5Tokenizer,
    AutoConfig,
)
from transformers.generation.logits_process import (
    LogitsProcessorList,
    RepetitionPenaltyLogitsProcessor,
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
)

from fastchat.conversation import get_conv_template, SeparatorStyle
from fastchat.model.model_adapter import (
    load_model,
    get_conversation_template,
    get_generate_stream_function,
)
from fastchat.modules.awq import AWQConfig
from fastchat.modules.gptq import GptqConfig
from fastchat.modules.exllama import ExllamaConfig
from fastchat.modules.xfastertransformer import XftConfig
from fastchat.utils import is_partial_stop, is_sentence_complete, get_context_length


def prepare_logits_processor(
    temperature: float, repetition_penalty: float, top_p: float, top_k: int
) -> LogitsProcessorList:
    processor_list = LogitsProcessorList()
    # TemperatureLogitsWarper doesn't accept 0.0, 1.0 makes it a no-op so we skip two cases.
    if temperature >= 1e-5 and temperature != 1.0:
        processor_list.append(TemperatureLogitsWarper(temperature))
    if repetition_penalty > 1.0:
        processor_list.append(RepetitionPenaltyLogitsProcessor(repetition_penalty))
    if 1e-8 <= top_p < 1.0:
        processor_list.append(TopPLogitsWarper(top_p))
    if top_k > 0:
        processor_list.append(TopKLogitsWarper(top_k))
    return processor_list


@torch.inference_mode()
def generate_stream(
    model,
    tokenizer,
    params: Dict,
    device: str,
    context_len: int,
    stream_interval: int = 2,
    judge_sent_end: bool = False,
):
    if hasattr(model, "device"):
        device = model.device

    # Read parameters
    prompt = params["prompt"]
    print(prompt)
    len_prompt = len(prompt)
    # temperature = float(params.get("temperature", 1.0))
    # repetition_penalty = float(params.get("repetition_penalty", 1.0))
    # top_p = float(params.get("top_p", 1.0))
    # top_k = int(params.get("top_k", -1))  # -1 means disable
    # max_new_tokens = int(params.get("max_new_tokens", 256))

    ###ADD
    #uncomment the original above, play params below
    temperature = float(params.get("temperature", 0.5))
    repetition_penalty = float(params.get("repetition_penalty", 1.2))
    top_p = float(params.get("top_p", 0.8))
    top_k = int(params.get("top_k", -1))  # -1 means disable
    max_new_tokens = int(params.get("max_new_tokens", 400))
    ###ADD

    print(temperature, repetition_penalty, top_p, top_k, max_new_tokens)
    print(prompt)


    logprobs = params.get("logprobs", None)  # FIXME: Support logprobs>1.
    echo = bool(params.get("echo", True))
    stop_str = params.get("stop", None)
    stop_token_ids = params.get("stop_token_ids", None) or []
    if tokenizer.eos_token_id not in stop_token_ids:
        stop_token_ids.append(tokenizer.eos_token_id)

    logits_processor = prepare_logits_processor(
        temperature, repetition_penalty, top_p, top_k
    )
    input_ids = tokenizer(prompt).input_ids

    if model.config.is_encoder_decoder:
        max_src_len = context_len
    else:  # truncate
        max_src_len = context_len - max_new_tokens - 1

    input_ids = input_ids[-max_src_len:]
    output_ids = list(input_ids)
    input_echo_len = len(input_ids)

    if model.config.is_encoder_decoder:
        if logprobs is not None:  # FIXME: Support logprobs for encoder-decoder models.
            raise NotImplementedError
        encoder_output = model.encoder(
            input_ids=torch.as_tensor([input_ids], device=device)
        )[0]
        start_ids = torch.as_tensor(
            [[model.generation_config.decoder_start_token_id]],
            dtype=torch.int64,
            device=device,
        )
    else:
        start_ids = torch.as_tensor([input_ids], device=device)

    past_key_values = out = None
    token_logprobs = [None]  # The first token has no logprobs.
    sent_interrupt = False
    finish_reason = None
    stopped = False
    for i in range(max_new_tokens):
        if i == 0:  # prefill
            if model.config.is_encoder_decoder:
                out = model.decoder(
                    input_ids=start_ids,
                    encoder_hidden_states=encoder_output,
                    use_cache=True,
                )
                logits = model.lm_head(out[0])
            else:
                out = model(input_ids=start_ids, use_cache=True)
                logits = out.logits
            past_key_values = out.past_key_values

            if logprobs is not None:
                # Prefull logprobs for the prompt.
                shift_input_ids = start_ids[..., 1:].contiguous()
                shift_logits = logits[..., :-1, :].contiguous()
                shift_logits = torch.log_softmax(shift_logits, dim=-1).tolist()
                for label_id, logit in zip(
                    shift_input_ids[0].tolist(), shift_logits[0]
                ):
                    token_logprobs.append(logit[label_id])
        else:  # decoding
            if model.config.is_encoder_decoder:
                out = model.decoder(
                    input_ids=torch.as_tensor(
                        [[token] if not sent_interrupt else output_ids],
                        device=device,
                    ),
                    encoder_hidden_states=encoder_output,
                    use_cache=True,
                    past_key_values=past_key_values if not sent_interrupt else None,
                )
                sent_interrupt = False

                logits = model.lm_head(out[0])
            else:
                out = model(
                    input_ids=torch.as_tensor(
                        [[token] if not sent_interrupt else output_ids],
                        device=device,
                    ),
                    use_cache=True,
                    past_key_values=past_key_values if not sent_interrupt else None,
                )
                sent_interrupt = False
                logits = out.logits
            past_key_values = out.past_key_values

        if logits_processor:
            if repetition_penalty > 1.0:
                tmp_output_ids = torch.as_tensor([output_ids], device=logits.device)
            else:
                tmp_output_ids = None
            last_token_logits = logits_processor(tmp_output_ids, logits[:, -1, :])[0]
        else:
            last_token_logits = logits[0, -1, :]

        if device == "mps":
            # Switch to CPU by avoiding some bugs in mps backend.
            last_token_logits = last_token_logits.float().to("cpu")

        if temperature < 1e-5 or top_p < 1e-8:  # greedy
            _, indices = torch.topk(last_token_logits, 2)
            tokens = [int(index) for index in indices.tolist()]
        else:
            probs = torch.softmax(last_token_logits, dim=-1)
            indices = torch.multinomial(probs, num_samples=2)
            tokens = [int(token) for token in indices.tolist()]
        token = tokens[0]
        output_ids.append(token)
        if logprobs is not None:
            # Cannot use last_token_logits because logprobs is based on raw logits.
            token_logprobs.append(
                torch.log_softmax(logits[0, -1, :], dim=-1)[token].tolist()
            )

        if token in stop_token_ids:
            stopped = True
        else:
            stopped = False

        # Yield the output tokens
        if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
            if echo:
                tmp_output_ids = output_ids
                rfind_start = len_prompt
            else:
                tmp_output_ids = output_ids[input_echo_len:]
                rfind_start = 0

            output = tokenizer.decode(
                tmp_output_ids,
                skip_special_tokens=True,
                spaces_between_special_tokens=False,
                clean_up_tokenization_spaces=True,
            )
            ret_logprobs = None
            if logprobs is not None:
                ret_logprobs = {
                    "text_offset": [],
                    "tokens": [
                        tokenizer.decode(token)
                        for token in (
                            output_ids if echo else output_ids[input_echo_len:]
                        )
                    ],
                    "token_logprobs": token_logprobs
                    if echo
                    else token_logprobs[input_echo_len:],
                    "top_logprobs": [{}]
                    * len(token_logprobs if echo else token_logprobs[input_echo_len:]),
                }
                # Compute text_offset
                curr_pos = 0
                for text in ret_logprobs["tokens"]:
                    ret_logprobs["text_offset"].append(curr_pos)
                    curr_pos += len(text)

            # TODO: For the issue of incomplete sentences interrupting output, apply a patch and others can also modify it to a more elegant way
            if judge_sent_end and stopped and not is_sentence_complete(output):
                if len(tokens) > 1:
                    token = tokens[1]
                    output_ids[-1] = token
                else:
                    output_ids.pop()
                stopped = False
                sent_interrupt = True

            partially_stopped = False
            if stop_str:
                if isinstance(stop_str, str):
                    pos = output.rfind(stop_str, rfind_start)
                    if pos != -1:
                        output = output[:pos]
                        stopped = True
                    else:
                        partially_stopped = is_partial_stop(output, stop_str)
                elif isinstance(stop_str, Iterable):
                    for each_stop in stop_str:
                        pos = output.rfind(each_stop, rfind_start)
                        if pos != -1:
                            output = output[:pos]
                            stopped = True
                            break
                        else:
                            partially_stopped = is_partial_stop(output, each_stop)
                            if partially_stopped:
                                break
                else:
                    raise ValueError("Invalid stop field type.")

            # Prevent yielding partial stop sequence
            if not partially_stopped:
                yield {
                    "text": output,
                    "logprobs": ret_logprobs,
                    "usage": {
                        "prompt_tokens": input_echo_len,
                        "completion_tokens": i,
                        "total_tokens": input_echo_len + i,
                    },
                    "finish_reason": None,
                }

        if stopped:
            break

    # Finish stream event, which contains finish reason
    else:
        finish_reason = "length"

    if stopped:
        finish_reason = "stop"

    yield {
        "text": output,
        "logprobs": ret_logprobs,
        "usage": {
            "prompt_tokens": input_echo_len,
            "completion_tokens": i,
            "total_tokens": input_echo_len + i,
        },
        "finish_reason": finish_reason,
    }

    # Clean
    del past_key_values, out
    gc.collect()
    torch.cuda.empty_cache()
    if device == "xpu":
        torch.xpu.empty_cache()
    if device == "npu":
        torch.npu.empty_cache()


class ChatIO(abc.ABC):
    @abc.abstractmethod
    def prompt_for_input(self, role: str) -> str:
        """Prompt for input from a role."""

    @abc.abstractmethod
    def prompt_for_output(self, role: str):
        """Prompt for output from a role."""

    @abc.abstractmethod
    def stream_output(self, output_stream):
        """Stream output."""

    @abc.abstractmethod
    def print_output(self, text: str):
        """Print output."""


def chat_loop(
    model_path: str,
    device: str,
    num_gpus: int,
    max_gpu_memory: str,
    dtype: Optional[torch.dtype],
    load_8bit: bool,
    cpu_offloading: bool,
    conv_template: Optional[str],
    conv_system_msg: Optional[str],
    temperature: float,
    repetition_penalty: float,
    max_new_tokens: int,
    chatio: ChatIO,
    gptq_config: Optional[GptqConfig] = None,
    awq_config: Optional[AWQConfig] = None,
    exllama_config: Optional[ExllamaConfig] = None,
    xft_config: Optional[XftConfig] = None,
    revision: str = "main",
    judge_sent_end: bool = True,
    debug: bool = True,
    history: bool = True,
):
    # Model
    model, tokenizer = load_model(
        model_path,
        device=device,
        num_gpus=num_gpus,
        max_gpu_memory=max_gpu_memory,
        dtype=dtype,
        load_8bit=load_8bit,
        cpu_offloading=cpu_offloading,
        gptq_config=gptq_config,
        awq_config=awq_config,
        exllama_config=exllama_config,
        xft_config=xft_config,
        revision=revision,
        debug=debug,
    )
    generate_stream_func = get_generate_stream_function(model, model_path)

    model_type = str(type(model)).lower()
    is_t5 = "t5" in model_type
    is_codet5p = "codet5p" in model_type
    is_xft = "xft" in model_type

    # Hardcode T5's default repetition penalty to be 1.2
    if is_t5 and repetition_penalty == 1.0:
        repetition_penalty = 1.2

    # Set context length
    context_len = get_context_length(model.config)

    # Chat
    def new_chat():
        if conv_template:
            conv = get_conv_template(conv_template)
        else:
            conv = get_conversation_template(model_path)
        if conv_system_msg is not None:
            conv.set_system_message(conv_system_msg)
        return conv

    def reload_conv(conv):
        """
        Reprints the conversation from the start.
        """
        for message in conv.messages[conv.offset :]:
            chatio.prompt_for_output(message[0])
            chatio.print_output(message[1])

    conv = None

    while True:
        if not history or not conv:
            conv = new_chat()

        try:
            inp = chatio.prompt_for_input(conv.roles[0])
        except EOFError:
            inp = ""

        if inp == "!!exit" or not inp:
            print("exit...")
            break
        elif inp == "!!reset":
            print("resetting...")
            conv = new_chat()
            continue
        elif inp == "!!remove":
            print("removing last message...")
            if len(conv.messages) > conv.offset:
                # Assistant
                if conv.messages[-1][0] == conv.roles[1]:
                    conv.messages.pop()
                # User
                if conv.messages[-1][0] == conv.roles[0]:
                    conv.messages.pop()
                reload_conv(conv)
            else:
                print("No messages to remove.")
            continue
        elif inp == "!!regen":
            print("regenerating last message...")
            if len(conv.messages) > conv.offset:
                # Assistant
                if conv.messages[-1][0] == conv.roles[1]:
                    conv.messages.pop()
                # User
                if conv.messages[-1][0] == conv.roles[0]:
                    reload_conv(conv)
                    # Set inp to previous message
                    inp = conv.messages.pop()[1]
                else:
                    # Shouldn't happen in normal circumstances
                    print("No user message to regenerate from.")
                    continue
            else:
                print("No messages to regenerate.")
                continue
        elif inp.startswith("!!save"):
            args = inp.split(" ", 1)

            if len(args) != 2:
                print("usage: !!save <filename>")
                continue
            else:
                filename = args[1]

            # Add .json if extension not present
            if not "." in filename:
                filename += ".json"

            print("saving...", filename)
            with open(filename, "w") as outfile:
                json.dump(conv.dict(), outfile)
            continue
        elif inp.startswith("!!load"):
            args = inp.split(" ", 1)

            if len(args) != 2:
                print("usage: !!load <filename>")
                continue
            else:
                filename = args[1]

            # Check if file exists and add .json if needed
            if not os.path.exists(filename):
                if (not filename.endswith(".json")) and os.path.exists(
                    filename + ".json"
                ):
                    filename += ".json"
                else:
                    print("file not found:", filename)
                    continue

            print("loading...", filename)
            with open(filename, "r") as infile:
                new_conv = json.load(infile)

            conv = get_conv_template(new_conv["template_name"])
            conv.set_system_message(new_conv["system_message"])
            conv.messages = new_conv["messages"]

            reload_conv(conv)
            continue

        conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        if is_codet5p:  # codet5p is a code completion model.
            prompt = inp

        gen_params = {
            "model": model_path,
            "prompt": prompt,
            "temperature": temperature,
            "repetition_penalty": repetition_penalty,
            "max_new_tokens": max_new_tokens,
            "stop": conv.stop_str,
            "stop_token_ids": conv.stop_token_ids,
            "echo": False,
        }

        try:
            chatio.prompt_for_output(conv.roles[1])
            output_stream = generate_stream_func(
                model,
                tokenizer,
                gen_params,
                device,
                context_len=context_len,
                judge_sent_end=judge_sent_end,
            )

            t = time.time()
            outputs = chatio.stream_output(output_stream)
            duration = time.time() - t
            conv.update_last_message(outputs.strip())

            if debug:
                num_tokens = len(tokenizer.encode(outputs))
                msg = {
                    "conv_template": conv.name,
                    "prompt": prompt,
                    "outputs": outputs,
                    "speed (token/s)": round(num_tokens / duration, 2),
                }
                print(f"\n{msg}\n")

        except KeyboardInterrupt:
            print("stopped generation.")
            # If generation didn't finish
            if conv.messages[-1][1] is None:
                conv.messages.pop()
                # Remove last user message, so there isn't a double up
                if conv.messages[-1][0] == conv.roles[0]:
                    conv.messages.pop()

                reload_conv(conv)