|
""" |
|
Usage: |
|
python3 qa_browser.py --share |
|
""" |
|
|
|
import argparse |
|
from collections import defaultdict |
|
import re |
|
|
|
import gradio as gr |
|
|
|
from fastchat.llm_judge.common import ( |
|
load_questions, |
|
load_model_answers, |
|
load_single_model_judgments, |
|
load_pairwise_model_judgments, |
|
resolve_single_judgment_dict, |
|
resolve_pairwise_judgment_dict, |
|
get_single_judge_explanation, |
|
get_pairwise_judge_explanation, |
|
) |
|
|
|
|
|
questions = [] |
|
model_answers = {} |
|
|
|
model_judgments_normal_single = {} |
|
model_judgments_math_single = {} |
|
|
|
model_judgments_normal_pairwise = {} |
|
model_judgments_math_pairwise = {} |
|
|
|
question_selector_map = {} |
|
category_selector_map = defaultdict(list) |
|
|
|
|
|
def display_question(category_selector, request: gr.Request): |
|
choices = category_selector_map[category_selector] |
|
return gr.Dropdown.update( |
|
value=choices[0], |
|
choices=choices, |
|
) |
|
|
|
|
|
def display_pairwise_answer( |
|
question_selector, model_selector1, model_selector2, request: gr.Request |
|
): |
|
q = question_selector_map[question_selector] |
|
qid = q["question_id"] |
|
|
|
ans1 = model_answers[model_selector1][qid] |
|
ans2 = model_answers[model_selector2][qid] |
|
|
|
chat_mds = pairwise_to_gradio_chat_mds(q, ans1, ans2) |
|
gamekey = (qid, model_selector1, model_selector2) |
|
|
|
judgment_dict = resolve_pairwise_judgment_dict( |
|
q, |
|
model_judgments_normal_pairwise, |
|
model_judgments_math_pairwise, |
|
multi_turn=False, |
|
) |
|
|
|
explanation = ( |
|
"##### Model Judgment (first turn)\n" |
|
+ get_pairwise_judge_explanation(gamekey, judgment_dict) |
|
) |
|
|
|
judgment_dict_turn2 = resolve_pairwise_judgment_dict( |
|
q, |
|
model_judgments_normal_pairwise, |
|
model_judgments_math_pairwise, |
|
multi_turn=True, |
|
) |
|
|
|
explanation_turn2 = ( |
|
"##### Model Judgment (second turn)\n" |
|
+ get_pairwise_judge_explanation(gamekey, judgment_dict_turn2) |
|
) |
|
|
|
return chat_mds + [explanation] + [explanation_turn2] |
|
|
|
|
|
def display_single_answer(question_selector, model_selector1, request: gr.Request): |
|
q = question_selector_map[question_selector] |
|
qid = q["question_id"] |
|
|
|
ans1 = model_answers[model_selector1][qid] |
|
|
|
chat_mds = single_to_gradio_chat_mds(q, ans1) |
|
gamekey = (qid, model_selector1) |
|
|
|
judgment_dict = resolve_single_judgment_dict( |
|
q, model_judgments_normal_single, model_judgments_math_single, multi_turn=False |
|
) |
|
|
|
explanation = "##### Model Judgment (first turn)\n" + get_single_judge_explanation( |
|
gamekey, judgment_dict |
|
) |
|
|
|
judgment_dict_turn2 = resolve_single_judgment_dict( |
|
q, model_judgments_normal_single, model_judgments_math_single, multi_turn=True |
|
) |
|
|
|
explanation_turn2 = ( |
|
"##### Model Judgment (second turn)\n" |
|
+ get_single_judge_explanation(gamekey, judgment_dict_turn2) |
|
) |
|
|
|
return chat_mds + [explanation] + [explanation_turn2] |
|
|
|
|
|
newline_pattern1 = re.compile("\n\n(\d+\. )") |
|
newline_pattern2 = re.compile("\n\n(- )") |
|
|
|
|
|
def post_process_answer(x): |
|
"""Fix Markdown rendering problems.""" |
|
x = x.replace("\u2022", "- ") |
|
x = re.sub(newline_pattern1, "\n\g<1>", x) |
|
x = re.sub(newline_pattern2, "\n\g<1>", x) |
|
return x |
|
|
|
|
|
def pairwise_to_gradio_chat_mds(question, ans_a, ans_b, turn=None): |
|
end = len(question["turns"]) if turn is None else turn + 1 |
|
|
|
mds = ["", "", "", "", "", "", ""] |
|
for i in range(end): |
|
base = i * 3 |
|
if i == 0: |
|
mds[base + 0] = "##### User\n" + question["turns"][i] |
|
else: |
|
mds[base + 0] = "##### User's follow-up question \n" + question["turns"][i] |
|
mds[base + 1] = "##### Assistant A\n" + post_process_answer( |
|
ans_a["choices"][0]["turns"][i].strip() |
|
) |
|
mds[base + 2] = "##### Assistant B\n" + post_process_answer( |
|
ans_b["choices"][0]["turns"][i].strip() |
|
) |
|
|
|
ref = question.get("reference", ["", ""]) |
|
|
|
ref_md = "" |
|
if turn is None: |
|
if ref[0] != "" or ref[1] != "": |
|
mds[6] = f"##### Reference Solution\nQ1. {ref[0]}\nQ2. {ref[1]}" |
|
else: |
|
x = ref[turn] if turn < len(ref) else "" |
|
if x: |
|
mds[6] = f"##### Reference Solution\n{ref[turn]}" |
|
else: |
|
mds[6] = "" |
|
return mds |
|
|
|
|
|
def single_to_gradio_chat_mds(question, ans, turn=None): |
|
end = len(question["turns"]) if turn is None else turn + 1 |
|
|
|
mds = ["", "", "", "", ""] |
|
for i in range(end): |
|
base = i * 2 |
|
if i == 0: |
|
mds[base + 0] = "##### User\n" + question["turns"][i] |
|
else: |
|
mds[base + 0] = "##### User's follow-up question \n" + question["turns"][i] |
|
mds[base + 1] = "##### Assistant A\n" + post_process_answer( |
|
ans["choices"][0]["turns"][i].strip() |
|
) |
|
|
|
ref = question.get("reference", ["", ""]) |
|
|
|
ref_md = "" |
|
if turn is None: |
|
if ref[0] != "" or ref[1] != "": |
|
mds[4] = f"##### Reference Solution\nQ1. {ref[0]}\nQ2. {ref[1]}" |
|
else: |
|
x = ref[turn] if turn < len(ref) else "" |
|
if x: |
|
mds[4] = f"##### Reference Solution\n{ref[turn]}" |
|
else: |
|
mds[4] = "" |
|
return mds |
|
|
|
|
|
def build_question_selector_map(): |
|
global question_selector_map, category_selector_map |
|
|
|
|
|
for q in questions: |
|
preview = f"{q['question_id']}: " + q["turns"][0][:128] + "..." |
|
question_selector_map[preview] = q |
|
category_selector_map[q["category"]].append(preview) |
|
|
|
|
|
def build_pairwise_browser_tab(): |
|
global question_selector_map, category_selector_map |
|
|
|
models = list(model_answers.keys()) |
|
num_sides = 2 |
|
num_turns = 2 |
|
side_names = ["A", "B"] |
|
|
|
question_selector_choices = list(question_selector_map.keys()) |
|
category_selector_choices = list(category_selector_map.keys()) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=200): |
|
category_selector = gr.Dropdown( |
|
choices=category_selector_choices, label="Category", container=False |
|
) |
|
with gr.Column(scale=100): |
|
question_selector = gr.Dropdown( |
|
choices=question_selector_choices, label="Question", container=False |
|
) |
|
|
|
model_selectors = [None] * num_sides |
|
with gr.Row(): |
|
for i in range(num_sides): |
|
with gr.Column(): |
|
if i == 0: |
|
value = models[0] |
|
else: |
|
value = "gpt-3.5-turbo" |
|
model_selectors[i] = gr.Dropdown( |
|
choices=models, |
|
value=value, |
|
label=f"Model {side_names[i]}", |
|
container=False, |
|
) |
|
|
|
|
|
chat_mds = [] |
|
for i in range(num_turns): |
|
chat_mds.append(gr.Markdown(elem_id=f"user_question_{i+1}")) |
|
with gr.Row(): |
|
for j in range(num_sides): |
|
with gr.Column(scale=100): |
|
chat_mds.append(gr.Markdown()) |
|
|
|
if j == 0: |
|
with gr.Column(scale=1, min_width=8): |
|
gr.Markdown() |
|
reference = gr.Markdown(elem_id=f"reference") |
|
chat_mds.append(reference) |
|
|
|
model_explanation = gr.Markdown(elem_id="model_explanation") |
|
model_explanation2 = gr.Markdown(elem_id="model_explanation") |
|
|
|
|
|
category_selector.change(display_question, [category_selector], [question_selector]) |
|
question_selector.change( |
|
display_pairwise_answer, |
|
[question_selector] + model_selectors, |
|
chat_mds + [model_explanation] + [model_explanation2], |
|
) |
|
|
|
for i in range(num_sides): |
|
model_selectors[i].change( |
|
display_pairwise_answer, |
|
[question_selector] + model_selectors, |
|
chat_mds + [model_explanation] + [model_explanation2], |
|
) |
|
|
|
return (category_selector,) |
|
|
|
|
|
def build_single_answer_browser_tab(): |
|
global question_selector_map, category_selector_map |
|
|
|
models = list(model_answers.keys()) |
|
num_sides = 1 |
|
num_turns = 2 |
|
side_names = ["A"] |
|
|
|
question_selector_choices = list(question_selector_map.keys()) |
|
category_selector_choices = list(category_selector_map.keys()) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=200): |
|
category_selector = gr.Dropdown( |
|
choices=category_selector_choices, label="Category", container=False |
|
) |
|
with gr.Column(scale=100): |
|
question_selector = gr.Dropdown( |
|
choices=question_selector_choices, label="Question", container=False |
|
) |
|
|
|
model_selectors = [None] * num_sides |
|
with gr.Row(): |
|
for i in range(num_sides): |
|
with gr.Column(): |
|
model_selectors[i] = gr.Dropdown( |
|
choices=models, |
|
value=models[i] if len(models) > i else "", |
|
label=f"Model {side_names[i]}", |
|
container=False, |
|
) |
|
|
|
|
|
chat_mds = [] |
|
for i in range(num_turns): |
|
chat_mds.append(gr.Markdown(elem_id=f"user_question_{i+1}")) |
|
with gr.Row(): |
|
for j in range(num_sides): |
|
with gr.Column(scale=100): |
|
chat_mds.append(gr.Markdown()) |
|
|
|
if j == 0: |
|
with gr.Column(scale=1, min_width=8): |
|
gr.Markdown() |
|
|
|
reference = gr.Markdown(elem_id=f"reference") |
|
chat_mds.append(reference) |
|
|
|
model_explanation = gr.Markdown(elem_id="model_explanation") |
|
model_explanation2 = gr.Markdown(elem_id="model_explanation") |
|
|
|
|
|
category_selector.change(display_question, [category_selector], [question_selector]) |
|
question_selector.change( |
|
display_single_answer, |
|
[question_selector] + model_selectors, |
|
chat_mds + [model_explanation] + [model_explanation2], |
|
) |
|
|
|
for i in range(num_sides): |
|
model_selectors[i].change( |
|
display_single_answer, |
|
[question_selector] + model_selectors, |
|
chat_mds + [model_explanation] + [model_explanation2], |
|
) |
|
|
|
return (category_selector,) |
|
|
|
|
|
block_css = """ |
|
#user_question_1 { |
|
background-color: #DEEBF7; |
|
} |
|
#user_question_2 { |
|
background-color: #E2F0D9; |
|
} |
|
#reference { |
|
background-color: #FFF2CC; |
|
} |
|
#model_explanation { |
|
background-color: #FBE5D6; |
|
} |
|
""" |
|
|
|
|
|
def load_demo(): |
|
dropdown_update = gr.Dropdown.update(value=list(category_selector_map.keys())[0]) |
|
return dropdown_update, dropdown_update |
|
|
|
|
|
def build_demo(): |
|
build_question_selector_map() |
|
|
|
with gr.Blocks( |
|
title="MT-Bench Browser", |
|
theme=gr.themes.Base(text_size=gr.themes.sizes.text_lg), |
|
css=block_css, |
|
) as demo: |
|
gr.Markdown( |
|
""" |
|
# MT-Bench Browser |
|
The code to generate answers and judgments is at [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). |
|
""" |
|
) |
|
with gr.Tab("Single Answer Grading"): |
|
(category_selector,) = build_single_answer_browser_tab() |
|
with gr.Tab("Pairwise Comparison"): |
|
(category_selector2,) = build_pairwise_browser_tab() |
|
demo.load(load_demo, [], [category_selector, category_selector2]) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="0.0.0.0") |
|
parser.add_argument("--port", type=int) |
|
parser.add_argument("--share", action="store_true") |
|
parser.add_argument("--bench-name", type=str, default="mt_bench") |
|
args = parser.parse_args() |
|
print(args) |
|
|
|
question_file = f"data/{args.bench_name}/question.jsonl" |
|
answer_dir = f"data/{args.bench_name}/model_answer" |
|
pairwise_model_judgment_file = ( |
|
f"data/{args.bench_name}/model_judgment/gpt-4_pair.jsonl" |
|
) |
|
single_model_judgment_file = ( |
|
f"data/{args.bench_name}/model_judgment/gpt-4_single.jsonl" |
|
) |
|
|
|
|
|
questions = load_questions(question_file, None, None) |
|
|
|
|
|
model_answers = load_model_answers(answer_dir) |
|
|
|
|
|
model_judgments_normal_single = ( |
|
model_judgments_math_single |
|
) = load_single_model_judgments(single_model_judgment_file) |
|
model_judgments_normal_pairwise = ( |
|
model_judgments_math_pairwise |
|
) = load_pairwise_model_judgments(pairwise_model_judgment_file) |
|
|
|
demo = build_demo() |
|
demo.queue(concurrency_count=10, status_update_rate=10, api_open=False).launch( |
|
server_name=args.host, server_port=args.port, share=args.share, max_threads=200 |
|
) |
|
|