|
""" |
|
The gradio demo server for chatting with a single model. |
|
""" |
|
|
|
import argparse |
|
from collections import defaultdict |
|
import datetime |
|
import json |
|
import os |
|
import random |
|
import time |
|
import uuid |
|
|
|
import gradio as gr |
|
import requests |
|
|
|
from fastchat.conversation import SeparatorStyle |
|
from fastchat.constants import ( |
|
LOGDIR, |
|
WORKER_API_TIMEOUT, |
|
ErrorCode, |
|
MODERATION_MSG, |
|
CONVERSATION_LIMIT_MSG, |
|
RATE_LIMIT_MSG, |
|
SERVER_ERROR_MSG, |
|
INPUT_CHAR_LEN_LIMIT, |
|
CONVERSATION_TURN_LIMIT, |
|
SESSION_EXPIRATION_TIME, |
|
) |
|
from fastchat.model.model_adapter import ( |
|
get_conversation_template, |
|
ANTHROPIC_MODEL_LIST, |
|
) |
|
from fastchat.model.model_registry import get_model_info, model_info |
|
from fastchat.serve.api_provider import ( |
|
anthropic_api_stream_iter, |
|
openai_api_stream_iter, |
|
palm_api_stream_iter, |
|
init_palm_chat, |
|
) |
|
from fastchat.utils import ( |
|
build_logger, |
|
moderation_filter, |
|
get_window_url_params_js, |
|
get_window_url_params_with_tos_js, |
|
parse_gradio_auth_creds, |
|
) |
|
|
|
from langchain_community.vectorstores import Chroma |
|
from langchain_community.embeddings import SentenceTransformerEmbeddings |
|
|
|
logger = build_logger("gradio_web_server", "gradio_web_server.log") |
|
|
|
headers = {"User-Agent": "FastChat Client"} |
|
|
|
no_change_btn = gr.Button.update() |
|
enable_btn = gr.Button.update(interactive=True, visible=True) |
|
disable_btn = gr.Button.update(interactive=False) |
|
invisible_btn = gr.Button.update(interactive=False, visible=False) |
|
|
|
controller_url = None |
|
enable_moderation = False |
|
|
|
acknowledgment_md = """ |
|
### Acknowledgment |
|
<div class="image-container"> |
|
<p> We thank <a href="https://www.kaggle.com/" target="_blank">Kaggle</a>, <a href="https://mbzuai.ac.ae/" target="_blank">MBZUAI</a>, <a href="https://www.anyscale.com/" target="_blank">AnyScale</a>, <a href="https://www.a16z.com/" target="_blank">a16z</a>, and <a href="https://huggingface.co/" target="_blank">HuggingFace</a> for their generous <a href="https://lmsys.org/donations/" target="_blank">sponsorship</a>. </p> |
|
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Kaggle_logo.png/400px-Kaggle_logo.png" alt="Kaggle"> |
|
<img src="https://mma.prnewswire.com/media/1227419/MBZUAI_Logo.jpg?p=facebookg" alt="MBZUAI"> |
|
<img src="https://docs.anyscale.com/site-assets/logo.png" alt="AnyScale"> |
|
<img src="https://a16z.com/wp-content/themes/a16z/assets/images/opegraph_images/corporate-Yoast-Twitter.jpg" alt="a16z"> |
|
<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-with-title.png" alt="HuggingFace"> |
|
</div> |
|
""" |
|
|
|
|
|
def chroma_search(): |
|
|
|
directory = "/mnt/beegfs/fahad.khan/GeoMinGPT/VectorDB/UAE_Specific_Docs_Embeddings" |
|
embeddings = SentenceTransformerEmbeddings(model_name ="sentence-transformers/all-MiniLM-L6-v2") |
|
vectorDB = Chroma(persist_directory=directory, embedding_function=embeddings) |
|
return vectorDB |
|
|
|
vectorDB = chroma_search() |
|
|
|
|
|
ip_expiration_dict = defaultdict(lambda: 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
openai_compatible_models_info = {} |
|
|
|
|
|
class State: |
|
def __init__(self, model_name): |
|
self.conv = get_conversation_template(model_name) |
|
self.conv_id = uuid.uuid4().hex |
|
self.skip_next = False |
|
self.model_name = model_name |
|
|
|
if model_name in ["palm-2", "gemini-pro"]: |
|
self.palm_chat = init_palm_chat(model_name) |
|
|
|
def to_gradio_chatbot(self): |
|
return self.conv.to_gradio_chatbot() |
|
|
|
def dict(self): |
|
base = self.conv.dict() |
|
base.update( |
|
{ |
|
"conv_id": self.conv_id, |
|
"model_name": self.model_name, |
|
} |
|
) |
|
return base |
|
|
|
|
|
def set_global_vars(controller_url_, enable_moderation_): |
|
global controller_url, enable_moderation |
|
controller_url = controller_url_ |
|
enable_moderation = enable_moderation_ |
|
|
|
|
|
def get_conv_log_filename(): |
|
t = datetime.datetime.now() |
|
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") |
|
return name |
|
|
|
|
|
def get_model_list( |
|
controller_url, register_openai_compatible_models, add_chatgpt, add_claude, add_palm |
|
): |
|
if controller_url: |
|
ret = requests.post(controller_url + "/refresh_all_workers") |
|
assert ret.status_code == 200 |
|
ret = requests.post(controller_url + "/list_models") |
|
models = ret.json()["models"] |
|
else: |
|
models = [] |
|
|
|
|
|
if register_openai_compatible_models: |
|
global openai_compatible_models_info |
|
openai_compatible_models_info = json.load( |
|
open(register_openai_compatible_models) |
|
) |
|
models += list(openai_compatible_models_info.keys()) |
|
|
|
if add_chatgpt: |
|
models += [ |
|
"gpt-4-0314", |
|
"gpt-4-0613", |
|
"gpt-3.5-turbo-0613", |
|
"gpt-3.5-turbo-1106", |
|
] |
|
if add_claude: |
|
models += ["claude-2.1", "claude-2.0", "claude-instant-1"] |
|
if add_palm: |
|
models += ["gemini-pro"] |
|
models = list(set(models)) |
|
|
|
hidden_models = ["gpt-4-0314", "gpt-4-0613"] |
|
for hm in hidden_models: |
|
if hm in models: |
|
del models[models.index(hm)] |
|
|
|
priority = {k: f"___{i:03d}" for i, k in enumerate(model_info)} |
|
models.sort(key=lambda x: priority.get(x, x)) |
|
logger.info(f"Models: {models}") |
|
return models |
|
|
|
|
|
def load_demo_single(models, url_params): |
|
selected_model = models[0] if len(models) > 0 else "" |
|
if "model" in url_params: |
|
model = url_params["model"] |
|
if model in models: |
|
selected_model = model |
|
|
|
dropdown_update = gr.Dropdown.update( |
|
choices=models, value=selected_model, visible=True |
|
) |
|
|
|
state = None |
|
return state, dropdown_update |
|
|
|
|
|
def load_demo(url_params, request: gr.Request): |
|
global models |
|
|
|
ip = get_ip(request) |
|
logger.info(f"load_demo. ip: {ip}. params: {url_params}") |
|
ip_expiration_dict[ip] = time.time() + SESSION_EXPIRATION_TIME |
|
|
|
if args.model_list_mode == "reload": |
|
models = get_model_list( |
|
controller_url, |
|
args.register_openai_compatible_models, |
|
args.add_chatgpt, |
|
args.add_claude, |
|
args.add_palm, |
|
) |
|
|
|
return load_demo_single(models, url_params) |
|
|
|
|
|
def vote_last_response(state, vote_type, model_selector, request: gr.Request): |
|
with open(get_conv_log_filename(), "a") as fout: |
|
data = { |
|
"tstamp": round(time.time(), 4), |
|
"type": vote_type, |
|
"model": model_selector, |
|
"state": state.dict(), |
|
"ip": get_ip(request), |
|
} |
|
fout.write(json.dumps(data) + "\n") |
|
|
|
|
|
def upvote_last_response(state, model_selector, request: gr.Request): |
|
ip = get_ip(request) |
|
logger.info(f"upvote. ip: {ip}") |
|
vote_last_response(state, "upvote", model_selector, request) |
|
return ("",) + (disable_btn,) * 3 |
|
|
|
|
|
def downvote_last_response(state, model_selector, request: gr.Request): |
|
ip = get_ip(request) |
|
logger.info(f"downvote. ip: {ip}") |
|
vote_last_response(state, "downvote", model_selector, request) |
|
return ("",) + (disable_btn,) * 3 |
|
|
|
|
|
def flag_last_response(state, model_selector, request: gr.Request): |
|
ip = get_ip(request) |
|
logger.info(f"flag. ip: {ip}") |
|
vote_last_response(state, "flag", model_selector, request) |
|
return ("",) + (disable_btn,) * 3 |
|
|
|
|
|
def regenerate(state, request: gr.Request): |
|
ip = get_ip(request) |
|
logger.info(f"regenerate. ip: {ip}") |
|
state.conv.update_last_message(None) |
|
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5 |
|
|
|
|
|
def clear_history(request: gr.Request): |
|
ip = get_ip(request) |
|
logger.info(f"clear_history. ip: {ip}") |
|
state = None |
|
return (state, [], "") + (disable_btn,) * 5 |
|
|
|
|
|
def get_ip(request: gr.Request): |
|
if "cf-connecting-ip" in request.headers: |
|
ip = request.headers["cf-connecting-ip"] |
|
else: |
|
ip = request.client.host |
|
return ip |
|
|
|
|
|
def add_text(state, model_selector, text, request: gr.Request): |
|
|
|
global score |
|
|
|
ip = get_ip(request) |
|
logger.info(f"add_text. ip: {ip}. len: {len(text)}") |
|
|
|
|
|
state = None |
|
if state is None: |
|
state = State(model_selector) |
|
|
|
if len(text) <= 0: |
|
state.skip_next = True |
|
return (state, state.to_gradio_chatbot(), "") + (no_change_btn,) * 5 |
|
|
|
flagged = moderation_filter(text, [state.model_name]) |
|
if flagged: |
|
logger.info(f"violate moderation. ip: {ip}. text: {text}") |
|
|
|
text = MODERATION_MSG |
|
|
|
conv = state.conv |
|
if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT: |
|
logger.info(f"conversation turn limit. ip: {ip}. text: {text}") |
|
state.skip_next = True |
|
return (state, state.to_gradio_chatbot(), CONVERSATION_LIMIT_MSG) + ( |
|
no_change_btn, |
|
) * 5 |
|
|
|
text = text[:INPUT_CHAR_LEN_LIMIT] |
|
|
|
|
|
result_docs = vectorDB.similarity_search_with_score(text, k=10) |
|
print(result_docs) |
|
full_prompt = "{}\n".format(result_docs[0][0].page_content) + \ |
|
"---------------------\n" + \ |
|
"You can use the information above to answer the following question :\n" + \ |
|
"{}".format(text) |
|
|
|
score = result_docs[0][1] |
|
|
|
if score < 1: |
|
conv.append_message(conv.roles[0], full_prompt) |
|
else : |
|
conv.append_message(conv.roles[0], text) |
|
|
|
|
|
|
|
conv.append_message(conv.roles[1], None) |
|
|
|
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5 |
|
|
|
|
|
def post_process_code(code): |
|
sep = "\n```" |
|
if sep in code: |
|
blocks = code.split(sep) |
|
if len(blocks) % 2 == 1: |
|
for i in range(1, len(blocks), 2): |
|
blocks[i] = blocks[i].replace("\\_", "_") |
|
code = sep.join(blocks) |
|
return code |
|
|
|
|
|
def model_worker_stream_iter( |
|
conv, |
|
model_name, |
|
worker_addr, |
|
prompt, |
|
temperature, |
|
repetition_penalty, |
|
top_p, |
|
max_new_tokens, |
|
): |
|
|
|
gen_params = { |
|
"model": model_name, |
|
"prompt": prompt, |
|
"temperature": temperature, |
|
"repetition_penalty": repetition_penalty, |
|
"top_p": top_p, |
|
"max_new_tokens": max_new_tokens, |
|
"stop": conv.stop_str, |
|
"stop_token_ids": conv.stop_token_ids, |
|
"echo": False, |
|
} |
|
logger.info(f"==== request ====\n{gen_params}") |
|
|
|
|
|
response = requests.post( |
|
worker_addr + "/worker_generate_stream", |
|
headers=headers, |
|
json=gen_params, |
|
stream=True, |
|
timeout=WORKER_API_TIMEOUT, |
|
) |
|
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): |
|
if chunk: |
|
data = json.loads(chunk.decode()) |
|
yield data |
|
|
|
|
|
def bot_response( |
|
state, |
|
temperature, |
|
top_p, |
|
max_new_tokens, |
|
request: gr.Request, |
|
apply_rate_limit=True, |
|
): |
|
ip = get_ip(request) |
|
logger.info(f"bot_response. ip: {ip}") |
|
start_tstamp = time.time() |
|
temperature = float(temperature) |
|
top_p = float(top_p) |
|
max_new_tokens = int(max_new_tokens) |
|
|
|
if state.skip_next: |
|
|
|
state.skip_next = False |
|
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 |
|
return |
|
|
|
conv, model_name = state.conv, state.model_name |
|
if model_name in openai_compatible_models_info: |
|
model_info = openai_compatible_models_info[model_name] |
|
prompt = conv.to_openai_api_messages() |
|
stream_iter = openai_api_stream_iter( |
|
model_info["model_name"], |
|
prompt, |
|
temperature, |
|
top_p, |
|
max_new_tokens, |
|
api_base=model_info["api_base"], |
|
api_key=model_info["api_key"], |
|
) |
|
elif model_name in [ |
|
"gpt-3.5-turbo", |
|
"gpt-3.5-turbo-0301", |
|
"gpt-3.5-turbo-0613", |
|
"gpt-3.5-turbo-1106", |
|
"gpt-4", |
|
"gpt-4-0314", |
|
"gpt-4-0613", |
|
"gpt-4-turbo", |
|
]: |
|
|
|
assert model_name not in openai_compatible_models_info |
|
prompt = conv.to_openai_api_messages() |
|
stream_iter = openai_api_stream_iter( |
|
model_name, prompt, temperature, top_p, max_new_tokens |
|
) |
|
elif model_name in ANTHROPIC_MODEL_LIST: |
|
prompt = conv.get_prompt() |
|
stream_iter = anthropic_api_stream_iter( |
|
model_name, prompt, temperature, top_p, max_new_tokens |
|
) |
|
elif model_name in ["palm-2", "gemini-pro"]: |
|
stream_iter = palm_api_stream_iter( |
|
model_name, |
|
state.palm_chat, |
|
conv.messages[-2][1], |
|
temperature, |
|
top_p, |
|
max_new_tokens, |
|
) |
|
else: |
|
|
|
ret = requests.post( |
|
controller_url + "/get_worker_address", json={"model": model_name} |
|
) |
|
worker_addr = ret.json()["address"] |
|
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}") |
|
|
|
|
|
if worker_addr == "": |
|
conv.update_last_message(SERVER_ERROR_MSG) |
|
yield ( |
|
state, |
|
state.to_gradio_chatbot(), |
|
disable_btn, |
|
disable_btn, |
|
disable_btn, |
|
enable_btn, |
|
enable_btn, |
|
) |
|
return |
|
|
|
|
|
|
|
prompt = conv.get_prompt() |
|
|
|
|
|
if "t5" in model_name: |
|
repetition_penalty = 1.2 |
|
else: |
|
repetition_penalty = 1.0 |
|
|
|
stream_iter = model_worker_stream_iter( |
|
conv, |
|
model_name, |
|
worker_addr, |
|
prompt, |
|
temperature, |
|
repetition_penalty, |
|
top_p, |
|
max_new_tokens, |
|
) |
|
|
|
conv.update_last_message("▌") |
|
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 |
|
|
|
try: |
|
for i, data in enumerate(stream_iter): |
|
if data["error_code"] == 0: |
|
output = data["text"].strip() |
|
conv.update_last_message(output + "▌") |
|
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 |
|
else: |
|
output = data["text"] + f"\n\n(error_code: {data['error_code']})" |
|
conv.update_last_message(output) |
|
yield (state, state.to_gradio_chatbot()) + ( |
|
disable_btn, |
|
disable_btn, |
|
disable_btn, |
|
enable_btn, |
|
enable_btn, |
|
) |
|
return |
|
output = data["text"].strip() |
|
if "vicuna" in model_name: |
|
output = post_process_code(output) |
|
conv.update_last_message(output) |
|
|
|
|
|
messages = conv.messages |
|
if '\nYou can use the information above to answer the following question :\n' in messages[-2][1]: |
|
messages[-2][1] = messages[-2][1].split('\nYou can use the information above to answer the following question :\n')[-1] |
|
conv.messages = messages |
|
|
|
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 |
|
except requests.exceptions.RequestException as e: |
|
conv.update_last_message( |
|
f"{SERVER_ERROR_MSG}\n\n" |
|
f"(error_code: {ErrorCode.GRADIO_REQUEST_ERROR}, {e})" |
|
) |
|
yield (state, state.to_gradio_chatbot()) + ( |
|
disable_btn, |
|
disable_btn, |
|
disable_btn, |
|
enable_btn, |
|
enable_btn, |
|
) |
|
return |
|
except Exception as e: |
|
conv.update_last_message( |
|
f"{SERVER_ERROR_MSG}\n\n" |
|
f"(error_code: {ErrorCode.GRADIO_STREAM_UNKNOWN_ERROR}, {e})" |
|
) |
|
yield (state, state.to_gradio_chatbot()) + ( |
|
disable_btn, |
|
disable_btn, |
|
disable_btn, |
|
enable_btn, |
|
enable_btn, |
|
) |
|
return |
|
|
|
finish_tstamp = time.time() |
|
logger.info(f"{output}") |
|
|
|
with open(get_conv_log_filename(), "a") as fout: |
|
data = { |
|
"tstamp": round(finish_tstamp, 4), |
|
"type": "chat", |
|
"model": model_name, |
|
"gen_params": { |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"max_new_tokens": max_new_tokens, |
|
}, |
|
"start": round(start_tstamp, 4), |
|
"finish": round(finish_tstamp, 4), |
|
"state": state.dict(), |
|
"ip": get_ip(request), |
|
} |
|
fout.write(json.dumps(data) + "\n") |
|
|
|
|
|
block_css = """ |
|
#notice_markdown { |
|
font-size: 110% |
|
} |
|
#notice_markdown th { |
|
display: none; |
|
} |
|
#notice_markdown td { |
|
padding-top: 6px; |
|
padding-bottom: 6px; |
|
} |
|
#model_description_markdown { |
|
font-size: 110% |
|
} |
|
#leaderboard_markdown { |
|
font-size: 110% |
|
} |
|
#leaderboard_markdown td { |
|
padding-top: 6px; |
|
padding-bottom: 6px; |
|
} |
|
#leaderboard_dataframe td { |
|
line-height: 0.1em; |
|
} |
|
#about_markdown { |
|
font-size: 110% |
|
} |
|
#ack_markdown { |
|
font-size: 110% |
|
} |
|
#input_box textarea { |
|
} |
|
footer { |
|
display:none !important |
|
} |
|
.image-container { |
|
display: flex; |
|
align-items: center; |
|
padding: 1px; |
|
} |
|
.image-container img { |
|
margin: 0 30px; |
|
height: 30px; |
|
max-height: 100%; |
|
width: auto; |
|
max-width: 20%; |
|
} |
|
.image-about img { |
|
margin: 0 30px; |
|
margin-top: 30px; |
|
height: 60px; |
|
max-height: 100%; |
|
width: auto; |
|
max-width: 20%; |
|
float: left; |
|
} |
|
""" |
|
|
|
|
|
def get_model_description_md(models): |
|
model_description_md = """ |
|
| | | | |
|
| ---- | ---- | ---- | |
|
""" |
|
ct = 0 |
|
visited = set() |
|
for i, name in enumerate(models): |
|
minfo = get_model_info(name) |
|
if minfo.simple_name in visited: |
|
continue |
|
visited.add(minfo.simple_name) |
|
one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}" |
|
|
|
if ct % 3 == 0: |
|
model_description_md += "|" |
|
model_description_md += f" {one_model_md} |" |
|
if ct % 3 == 2: |
|
model_description_md += "\n" |
|
ct += 1 |
|
return model_description_md |
|
|
|
|
|
def build_about(): |
|
about_markdown = f""" |
|
# About Us |
|
Chatbot Arena is an open-source research project developed by members from [LMSYS](https://lmsys.org/about/) and UC Berkeley [SkyLab](https://sky.cs.berkeley.edu/). Our mission is to build an open crowdsourced platform to collect human feedback and evaluate LLMs under real-world scenarios. We open-source our [FastChat](https://github.com/lm-sys/FastChat) project at GitHub and release chat and human feedback datasets [here](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md). We invite everyone to join us in this journey! |
|
|
|
## Read More |
|
- Chatbot Arena [launch post](https://lmsys.org/blog/2023-05-03-arena/), [data release](https://lmsys.org/blog/2023-07-20-dataset/) |
|
- LMSYS-Chat-1M [report](https://arxiv.org/abs/2309.11998) |
|
|
|
## Core Members |
|
[Lianmin Zheng](https://lmzheng.net/), [Wei-Lin Chiang](https://infwinston.github.io/), [Ying Sheng](https://sites.google.com/view/yingsheng/home), [Siyuan Zhuang](https://scholar.google.com/citations?user=KSZmI5EAAAAJ) |
|
|
|
## Advisors |
|
[Ion Stoica](http://people.eecs.berkeley.edu/~istoica/), [Joseph E. Gonzalez](https://people.eecs.berkeley.edu/~jegonzal/), [Hao Zhang](https://cseweb.ucsd.edu/~haozhang/) |
|
|
|
## Contact Us |
|
- Follow our [Twitter](https://twitter.com/lmsysorg), [Discord](https://discord.gg/HSWAKCrnFx) or email us at lmsys.org@gmail.com |
|
- File issues on [GitHub](https://github.com/lm-sys/FastChat) |
|
- Download our datasets and models on [HuggingFace](https://huggingface.co/lmsys) |
|
|
|
## Acknowledgment |
|
We thank [SkyPilot](https://github.com/skypilot-org/skypilot) and [Gradio](https://github.com/gradio-app/gradio) team for their system support. |
|
We also thank [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [Anyscale](https://www.anyscale.com/), [a16z](https://www.a16z.com/), [HuggingFace](https://huggingface.co/) for their generous sponsorship. |
|
Learn more about partnership [here](https://lmsys.org/donations/). |
|
|
|
<div class="image-about"> |
|
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Kaggle_logo.png/400px-Kaggle_logo.png" alt="Kaggle"> |
|
<img src="https://mma.prnewswire.com/media/1227419/MBZUAI_Logo.jpg?p=facebookg" alt="MBZUAI"> |
|
<img src="https://docs.anyscale.com/site-assets/logo.png" alt="AnyScale"> |
|
<img src="https://a16z.com/wp-content/themes/a16z/assets/images/opegraph_images/corporate-Yoast-Twitter.jpg" alt="a16z"> |
|
<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-with-title.png" alt="HuggingFace"> |
|
</div> |
|
""" |
|
|
|
|
|
gr.Markdown(about_markdown, elem_id="about_markdown") |
|
|
|
|
|
|
|
|
|
def build_single_model_ui(models, add_promotion_links=False): |
|
promotion = ( |
|
""" |
|
- | [GitHub](https://github.com/lm-sys/FastChat) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) | |
|
- Introducing Llama 2: The Next Generation Open Source Large Language Model. [[Website]](https://ai.meta.com/llama/) |
|
- Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality. [[Blog]](https://lmsys.org/blog/2023-03-30-vicuna/) |
|
|
|
## 🤖 Choose any model to chat |
|
""" |
|
if add_promotion_links |
|
else "" |
|
) |
|
|
|
notice_markdown = f""" |
|
# 🏔️ Chat with Open Large Language Models |
|
{promotion} |
|
""" |
|
|
|
state = gr.State() |
|
gr.Markdown(notice_markdown, elem_id="notice_markdown") |
|
|
|
with gr.Box(elem_id="share-region-named"): |
|
with gr.Row(elem_id="model_selector_row"): |
|
model_selector = gr.Dropdown( |
|
choices=models, |
|
value=models[0] if len(models) > 0 else "", |
|
interactive=True, |
|
show_label=False, |
|
container=False, |
|
) |
|
with gr.Row(): |
|
with gr.Accordion( |
|
"🔍 Expand to see 20+ model descriptions", |
|
open=False, |
|
elem_id="model_description_accordion", |
|
): |
|
model_description_md = get_model_description_md(models) |
|
gr.Markdown(model_description_md, elem_id="model_description_markdown") |
|
|
|
chatbot = gr.Chatbot( |
|
elem_id="chatbot", |
|
label="Scroll down and start chatting", |
|
height=550, |
|
show_copy_button=True, |
|
) |
|
with gr.Row(): |
|
textbox = gr.Textbox( |
|
show_label=False, |
|
placeholder="👉 Enter your prompt and press ENTER", |
|
container=False, |
|
elem_id="input_box", |
|
) |
|
send_btn = gr.Button(value="Send", variant="primary", scale=0) |
|
|
|
with gr.Row() as button_row: |
|
upvote_btn = gr.Button(value="👍 Upvote", interactive=False) |
|
downvote_btn = gr.Button(value="👎 Downvote", interactive=False) |
|
flag_btn = gr.Button(value="⚠️ Flag", interactive=False) |
|
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) |
|
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False) |
|
|
|
with gr.Accordion("Parameters", open=False) as parameter_row: |
|
temperature = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.7, |
|
step=0.1, |
|
interactive=True, |
|
label="Temperature", |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.1, |
|
interactive=True, |
|
label="Top P", |
|
) |
|
max_output_tokens = gr.Slider( |
|
minimum=16, |
|
maximum=2048, |
|
value=1024, |
|
step=64, |
|
interactive=True, |
|
label="Max output tokens", |
|
) |
|
|
|
if add_promotion_links: |
|
gr.Markdown(acknowledgment_md, elem_id="ack_markdown") |
|
|
|
|
|
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] |
|
upvote_btn.click( |
|
upvote_last_response, |
|
[state, model_selector], |
|
[textbox, upvote_btn, downvote_btn, flag_btn], |
|
) |
|
downvote_btn.click( |
|
downvote_last_response, |
|
[state, model_selector], |
|
[textbox, upvote_btn, downvote_btn, flag_btn], |
|
) |
|
flag_btn.click( |
|
flag_last_response, |
|
[state, model_selector], |
|
[textbox, upvote_btn, downvote_btn, flag_btn], |
|
) |
|
regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then( |
|
bot_response, |
|
[state, temperature, top_p, max_output_tokens], |
|
[state, chatbot] + btn_list, |
|
) |
|
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list) |
|
|
|
model_selector.change(clear_history, None, [state, chatbot, textbox] + btn_list) |
|
|
|
textbox.submit( |
|
add_text, [state, model_selector, textbox], [state, chatbot, textbox] + btn_list |
|
).then( |
|
bot_response, |
|
[state, temperature, top_p, max_output_tokens], |
|
[state, chatbot] + btn_list, |
|
) |
|
send_btn.click( |
|
add_text, |
|
[state, model_selector, textbox], |
|
[state, chatbot, textbox] + btn_list, |
|
).then( |
|
bot_response, |
|
[state, temperature, top_p, max_output_tokens], |
|
[state, chatbot] + btn_list, |
|
) |
|
|
|
return [state, model_selector] |
|
|
|
|
|
def build_demo(models): |
|
with gr.Blocks( |
|
title="Chat with Open Large Language Models", |
|
theme=gr.themes.Default(), |
|
css=block_css, |
|
) as demo: |
|
url_params = gr.JSON(visible=False) |
|
|
|
state, model_selector = build_single_model_ui(models) |
|
|
|
if args.model_list_mode not in ["once", "reload"]: |
|
raise ValueError(f"Unknown model list mode: {args.model_list_mode}") |
|
|
|
if args.show_terms_of_use: |
|
load_js = get_window_url_params_with_tos_js |
|
else: |
|
load_js = get_window_url_params_js |
|
|
|
demo.load( |
|
load_demo, |
|
[url_params], |
|
[ |
|
state, |
|
model_selector, |
|
], |
|
_js=load_js, |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="0.0.0.0") |
|
parser.add_argument("--port", type=int) |
|
parser.add_argument( |
|
"--share", |
|
action="store_true", |
|
help="Whether to generate a public, shareable link", |
|
) |
|
parser.add_argument( |
|
"--controller-url", |
|
type=str, |
|
default="http://localhost:21001", |
|
help="The address of the controller", |
|
) |
|
parser.add_argument( |
|
"--concurrency-count", |
|
type=int, |
|
default=10, |
|
help="The concurrency count of the gradio queue", |
|
) |
|
parser.add_argument( |
|
"--model-list-mode", |
|
type=str, |
|
default="once", |
|
choices=["once", "reload"], |
|
help="Whether to load the model list once or reload the model list every time", |
|
) |
|
parser.add_argument( |
|
"--moderate", |
|
action="store_true", |
|
help="Enable content moderation to block unsafe inputs", |
|
) |
|
parser.add_argument( |
|
"--show-terms-of-use", |
|
action="store_true", |
|
help="Shows term of use before loading the demo", |
|
) |
|
parser.add_argument( |
|
"--add-chatgpt", |
|
action="store_true", |
|
help="Add OpenAI's ChatGPT models (gpt-3.5-turbo, gpt-4)", |
|
) |
|
parser.add_argument( |
|
"--add-claude", |
|
action="store_true", |
|
help="Add Anthropic's Claude models (claude-2, claude-instant-1)", |
|
) |
|
parser.add_argument( |
|
"--add-palm", |
|
action="store_true", |
|
help="Add Google's PaLM model (PaLM 2 for Chat: chat-bison@001)", |
|
) |
|
parser.add_argument( |
|
"--register-openai-compatible-models", |
|
type=str, |
|
help="Register custom OpenAI API compatible models by loading them from a JSON file", |
|
) |
|
parser.add_argument( |
|
"--gradio-auth-path", |
|
type=str, |
|
help='Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3"', |
|
) |
|
parser.add_argument( |
|
"--gradio-root-path", |
|
type=str, |
|
help="Sets the gradio root path, eg /abc/def. Useful when running behind a reverse-proxy or at a custom URL path prefix", |
|
) |
|
args = parser.parse_args() |
|
logger.info(f"args: {args}") |
|
|
|
|
|
set_global_vars(args.controller_url, args.moderate) |
|
models = get_model_list( |
|
args.controller_url, |
|
args.register_openai_compatible_models, |
|
args.add_chatgpt, |
|
args.add_claude, |
|
args.add_palm, |
|
) |
|
|
|
|
|
auth = None |
|
if args.gradio_auth_path is not None: |
|
auth = parse_gradio_auth_creds(args.gradio_auth_path) |
|
|
|
|
|
demo = build_demo(models) |
|
demo.queue( |
|
concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False |
|
).launch( |
|
server_name=args.host, |
|
server_port=args.port, |
|
share=True, |
|
max_threads=200, |
|
auth=auth, |
|
root_path=args.gradio_root_path, |
|
) |
|
|