# Usage: | |
# python3 -m fastchat.serve.model_worker --model-path lmsys/vicuna-7b-v1.5 --model-names gpt-3.5-turbo,text-davinci-003,text-embedding-ada-002 | |
# export OPENAI_API_BASE=http://localhost:8000/v1 | |
# export OPENAI_API_KEY=EMPTY | |
# wget https://raw.githubusercontent.com/hwchase17/langchain/v0.0.200/docs/modules/state_of_the_union.txt | |
import os | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import TextLoader | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.indexes import VectorstoreIndexCreator | |
def test_chain(): | |
embedding = OpenAIEmbeddings(model="text-embedding-ada-002") | |
loader = TextLoader("state_of_the_union.txt") | |
index = VectorstoreIndexCreator(embedding=embedding).from_loaders([loader]) | |
llm = ChatOpenAI(model="gpt-3.5-turbo") | |
questions = [ | |
"Who is the speaker", | |
"What did the president say about Ketanji Brown Jackson", | |
"What are the threats to America", | |
"Who are mentioned in the speech", | |
"Who is the vice president", | |
"How many projects were announced", | |
] | |
for query in questions: | |
print("Query:", query) | |
print("Answer:", index.query(query, llm=llm)) | |
if __name__ == "__main__": | |
os.environ["OPENAI_API_BASE"] = "http://localhost:8000/v1" | |
os.environ["OPENAI_API_KEY"] = "empty" | |
test_chain() | |