File size: 49,474 Bytes
4e97c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd1a55a
4e97c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5059c0d
90fe97e
2cf63f7
 
90fe97e
 
 
 
4e97c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c6d80c
 
4e97c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d39e72
 
 
 
 
 
 
4e97c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d39e72
4e97c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5059c0d
 
 
4e97c85
 
5059c0d
4e97c85
 
 
 
5059c0d
4e97c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d39e72
 
 
4e97c85
 
 
 
adda03a
4e97c85
 
 
 
 
1d39e72
adda03a
4e97c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
import spaces
import argparse
import random

import os
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
import datetime
from pathlib import Path
from io import BytesIO



from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
import dds_cloudapi_sdk
from dds_cloudapi_sdk import Config, Client, TextPrompt
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks import DetectionTarget
from dds_cloudapi_sdk.tasks.detection import DetectionTask

from enum import Enum
from torch.hub import download_url_to_file
import tempfile

from sam2.build_sam import build_sam2

from sam2.sam2_image_predictor import SAM2ImagePredictor
import cv2

from transformers import AutoModelForImageSegmentation
from inference_i2mv_sdxl import prepare_pipeline, remove_bg, run_pipeline
from torchvision import transforms


from typing import Optional

from depth_anything_v2.dpt import DepthAnythingV2

import httpx

client = httpx.Client(timeout=httpx.Timeout(10.0))  # Set timeout to 10 seconds
NUM_VIEWS = 6
HEIGHT = 768
WIDTH = 768
MAX_SEED = np.iinfo(np.int32).max


import supervision as sv
import torch
from PIL import Image

import logging

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')

transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

# Load

# Model paths
model_path = './models/iclight_sd15_fc.safetensors'
model_path2 = './checkpoints/depth_anything_v2_vits.pth'
model_path3 = './checkpoints/sam2_hiera_large.pt'
model_path4 = './checkpoints/config.json'
model_path5 = './checkpoints/preprocessor_config.json'
model_path6 = './configs/sam2_hiera_l.yaml'
model_path7 = './mvadapter_i2mv_sdxl.safetensors'

# Base URL for the repository
BASE_URL = 'https://huggingface.co/Ashoka74/Placement/resolve/main/'

# Model URLs
model_urls = {
    model_path: 'iclight_sd15_fc.safetensors',
    model_path2: 'depth_anything_v2_vits.pth',
    model_path3: 'sam2_hiera_large.pt',
    model_path4: 'config.json',
    model_path5: 'preprocessor_config.json',
    model_path6: 'sam2_hiera_l.yaml',
    model_path7: 'mvadapter_i2mv_sdxl.safetensors'
}

# Ensure directories exist
def ensure_directories():
    for path in model_urls.keys():
        os.makedirs(os.path.dirname(path), exist_ok=True)

# Download models
def download_models():
    for local_path, filename in model_urls.items():
        if not os.path.exists(local_path):
            try:
                url = f"{BASE_URL}{filename}"
                print(f"Downloading {filename}")
                download_url_to_file(url, local_path)
                print(f"Successfully downloaded {filename}")
            except Exception as e:
                print(f"Error downloading {filename}: {e}")

ensure_directories()

download_models()





try:
    import xformers
    import xformers.ops
    XFORMERS_AVAILABLE = True
    print("xformers is available - Using memory efficient attention")
except ImportError:
    XFORMERS_AVAILABLE = False
    print("xformers not available - Using default attention")

# Memory optimizations for RTX 2070
torch.backends.cudnn.benchmark = True
if torch.cuda.is_available():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    # Set a smaller attention slice size for RTX 2070
    torch.backends.cuda.max_split_size_mb = 512
    device = torch.device('cuda')
else:
    device = torch.device('cpu')



# 'stablediffusionapi/realistic-vision-v51'
# 'runwayml/stable-diffusion-v1-5'
sd15_name = 'stablediffusionapi/realistic-vision-v51'
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
# Load model directly
from transformers import AutoModelForImageSegmentation
rmbg = AutoModelForImageSegmentation.from_pretrained("briaai/BRIA-RMBG-2.0", trust_remote_code=True)
rmbg = rmbg.to(device=device, dtype=torch.float32)  # Keep this as float32

# remove bg
# rmbg = AutoModelForImageSegmentation.from_pretrained(
#     "ZhengPeng7/BiRefNet", trust_remote_code=True
# )
# rmbg = rmbg.to(device)

model = DepthAnythingV2(encoder='vits', features=64, out_channels=[48, 96, 192, 384])
model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vits.pth', map_location=device))
model = model.to(device)
model.eval()

# Change UNet


with torch.no_grad():
    new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
    new_conv_in.weight.zero_()
    new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
    new_conv_in.bias = unet.conv_in.bias
    unet.conv_in = new_conv_in


unet_original_forward = unet.forward


def enable_efficient_attention():
    if XFORMERS_AVAILABLE:
        try:
            # RTX 2070 specific settings
            unet.set_use_memory_efficient_attention_xformers(True)
            vae.set_use_memory_efficient_attention_xformers(True)
            print("Enabled xformers memory efficient attention")
        except Exception as e:
            print(f"Xformers error: {e}")
            print("Falling back to sliced attention")
            # Use sliced attention for RTX 2070
            # unet.set_attention_slice_size(4)
            # vae.set_attention_slice_size(4)
            unet.set_attn_processor(AttnProcessor2_0())
            vae.set_attn_processor(AttnProcessor2_0())
    else:
        # Fallback for when xformers is not available
        print("Using sliced attention")
        # unet.set_attention_slice_size(4)
        # vae.set_attention_slice_size(4)
        unet.set_attn_processor(AttnProcessor2_0())
        vae.set_attn_processor(AttnProcessor2_0())

# Add memory clearing function
def clear_memory():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

# Enable efficient attention
enable_efficient_attention()


def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
    c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
    c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
    new_sample = torch.cat([sample, c_concat], dim=1)
    kwargs['cross_attention_kwargs'] = {}
    return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)


unet.forward = hooked_unet_forward




sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
keys = sd_origin.keys()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged, keys

# Device

# device = torch.device('cuda')
# text_encoder = text_encoder.to(device=device, dtype=torch.float16)
# vae = vae.to(device=device, dtype=torch.bfloat16)
# unet = unet.to(device=device, dtype=torch.float16)
# rmbg = rmbg.to(device=device, dtype=torch.float32)


# Device and dtype setup
device = torch.device('cuda')
dtype = torch.float16  # RTX 2070 works well with float16

pipe = prepare_pipeline(
    base_model="stabilityai/stable-diffusion-xl-base-1.0",
    vae_model="madebyollin/sdxl-vae-fp16-fix",
    unet_model=None,
    lora_model=None,
    adapter_path="huanngzh/mv-adapter",
    scheduler=None,
    num_views=NUM_VIEWS,
    device=device,
    dtype=dtype,
)

# Memory optimizations for RTX 2070
torch.backends.cudnn.benchmark = True
if torch.cuda.is_available():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    # Set a very small attention slice size for RTX 2070 to avoid OOM
    torch.backends.cuda.max_split_size_mb = 128

# Move models to device with consistent dtype
text_encoder = text_encoder.to(device=device, dtype=dtype)
vae = vae.to(device=device, dtype=dtype)  # Changed from bfloat16 to float16
unet = unet.to(device=device, dtype=dtype)
rmbg = rmbg.to(device=device, dtype=torch.float32)  # Keep this as float32


ddim_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)

euler_a_scheduler = EulerAncestralDiscreteScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    steps_offset=1
)

dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    algorithm_type="sde-dpmsolver++",
    use_karras_sigmas=True,
    steps_offset=1
)

# Pipelines

t2i_pipe = StableDiffusionPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=dpmpp_2m_sde_karras_scheduler,
    safety_checker=None,
    requires_safety_checker=False,
    feature_extractor=None,
    image_encoder=None
)

i2i_pipe = StableDiffusionImg2ImgPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=dpmpp_2m_sde_karras_scheduler,
    safety_checker=None,
    requires_safety_checker=False,
    feature_extractor=None,
    image_encoder=None
)


@torch.inference_mode()
def encode_prompt_inner(txt: str):
    max_length = tokenizer.model_max_length
    chunk_length = tokenizer.model_max_length - 2
    id_start = tokenizer.bos_token_id
    id_end = tokenizer.eos_token_id
    id_pad = id_end

    def pad(x, p, i):
        return x[:i] if len(x) >= i else x + [p] * (i - len(x))

    tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
    chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
    chunks = [pad(ck, id_pad, max_length) for ck in chunks]

    token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
    conds = text_encoder(token_ids).last_hidden_state

    return conds


@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
    c = encode_prompt_inner(positive_prompt)
    uc = encode_prompt_inner(negative_prompt)

    c_len = float(len(c))
    uc_len = float(len(uc))
    max_count = max(c_len, uc_len)
    c_repeat = int(math.ceil(max_count / c_len))
    uc_repeat = int(math.ceil(max_count / uc_len))
    max_chunk = max(len(c), len(uc))

    c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
    uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]

    c = torch.cat([p[None, ...] for p in c], dim=1)
    uc = torch.cat([p[None, ...] for p in uc], dim=1)

    return c, uc

@spaces.GPU(duration=60)
@torch.inference_mode()
@spaces.GPU(duration=60)
@torch.inference_mode()
def infer(
    prompt,
    image,  # This is already RGBA with background removed
    do_rembg=True,
    seed=42,
    randomize_seed=False,
    guidance_scale=3.0,
    num_inference_steps=50,
    reference_conditioning_scale=1.0,
    negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
    progress=gr.Progress(track_tqdm=True),
):
    logging.info(f"Input image shape: {image.shape}, dtype: {image.dtype}")
    
    # Convert input to PIL if needed
    if isinstance(image, np.ndarray):
        if image.shape[-1] == 4:  # RGBA
            image = Image.fromarray(image, 'RGBA')
        else:  # RGB
            image = Image.fromarray(image, 'RGB')
    
    logging.info(f"Converted to PIL Image mode: {image.mode}")
    
    # No need for remove_bg_fn since image is already processed
    remove_bg_fn = None
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    images, preprocessed_image = run_pipeline(
        pipe,
        num_views=NUM_VIEWS,
        text=prompt,
        image=image,
        height=HEIGHT,
        width=WIDTH,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        seed=seed,
        remove_bg_fn=remove_bg_fn,  # Set to None since preprocessing is done
        reference_conditioning_scale=reference_conditioning_scale,
        negative_prompt=negative_prompt,
        device=device,
    )
    
    # logging.info(f"Output images shape: {[img.shape for img in images]}")
    # logging.info(f"Preprocessed image shape: {preprocessed_image.shape if preprocessed_image is not None else None}")
    return images


@spaces.GPU(duration=60)
@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
    results = []
    for x in imgs:
        y = x.movedim(0, -1)

        if quant:
            y = y * 127.5 + 127.5
            y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
        else:
            y = y * 0.5 + 0.5
            y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)

        results.append(y)
    return results

@spaces.GPU(duration=60)
@torch.inference_mode()
def numpy2pytorch(imgs):
    h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0  # so that 127 must be strictly 0.0
    h = h.movedim(-1, 1)
    return h


def resize_and_center_crop(image, target_width, target_height):
    pil_image = Image.fromarray(image)
    original_width, original_height = pil_image.size
    scale_factor = max(target_width / original_width, target_height / original_height)
    resized_width = int(round(original_width * scale_factor))
    resized_height = int(round(original_height * scale_factor))
    resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
    left = (resized_width - target_width) / 2
    top = (resized_height - target_height) / 2
    right = (resized_width + target_width) / 2
    bottom = (resized_height + target_height) / 2
    cropped_image = resized_image.crop((left, top, right, bottom))
    return np.array(cropped_image)


def resize_without_crop(image, target_width, target_height):
    pil_image = Image.fromarray(image)
    resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
    return np.array(resized_image)

@spaces.GPU(duration=60)
@torch.inference_mode()
def run_rmbg(img, sigma=0.0):
    # Convert RGBA to RGB if needed
    if img.shape[-1] == 4:
        # Use white background for alpha composition
        alpha = img[..., 3:] / 255.0
        rgb = img[..., :3]
        white_bg = np.ones_like(rgb) * 255
        img = (rgb * alpha + white_bg * (1 - alpha)).astype(np.uint8)
    
    H, W, C = img.shape
    assert C == 3
    k = (256.0 / float(H * W)) ** 0.5
    feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k)))
    feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32)
    alpha = rmbg(feed)[0][0]
    alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
    alpha = alpha.movedim(1, -1)[0]
    alpha = alpha.detach().float().cpu().numpy().clip(0, 1)
    
    # Create RGBA image
    rgba = np.dstack((img, alpha * 255)).astype(np.uint8)
    result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha
    return result.clip(0, 255).astype(np.uint8), rgba

@spaces.GPU(duration=60)
@torch.inference_mode()
def process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source):
    clear_memory()

    # Get input dimensions
    input_height, input_width = input_fg.shape[:2]

    bg_source = BGSource(bg_source)


    if bg_source == BGSource.UPLOAD:
        pass
    elif bg_source == BGSource.UPLOAD_FLIP:
        input_bg = np.fliplr(input_bg)
    if bg_source == BGSource.GREY:
        input_bg = np.zeros(shape=(input_height, input_width, 3), dtype=np.uint8) + 64
    elif bg_source == BGSource.LEFT:
        gradient = np.linspace(255, 0, input_width)
        image = np.tile(gradient, (input_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.RIGHT:
        gradient = np.linspace(0, 255, input_width)
        image = np.tile(gradient, (input_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.TOP:
        gradient = np.linspace(255, 0, input_height)[:, None]
        image = np.tile(gradient, (1, input_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.BOTTOM:
        gradient = np.linspace(0, 255, input_height)[:, None]
        image = np.tile(gradient, (1, input_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    else:
        raise 'Wrong initial latent!'

    rng = torch.Generator(device=device).manual_seed(int(seed))

    # Use input dimensions directly
    fg = resize_without_crop(input_fg, input_width, input_height)

    concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor

    conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)

    if input_bg is None:
        latents = t2i_pipe(
            prompt_embeds=conds,
            negative_prompt_embeds=unconds,
            width=input_width,
            height=input_height,
            num_inference_steps=steps,
            num_images_per_prompt=num_samples,
            generator=rng,
            output_type='latent',
            guidance_scale=cfg,
            cross_attention_kwargs={'concat_conds': concat_conds},
        ).images.to(vae.dtype) / vae.config.scaling_factor
    else:
        bg = resize_without_crop(input_bg, input_width, input_height)
        bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype)
        bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor
        latents = i2i_pipe(
            image=bg_latent,
            strength=lowres_denoise,
            prompt_embeds=conds,
            negative_prompt_embeds=unconds,
            width=input_width,
            height=input_height,
            num_inference_steps=int(round(steps / lowres_denoise)),
            num_images_per_prompt=num_samples,
            generator=rng,
            output_type='latent',
            guidance_scale=cfg,
            cross_attention_kwargs={'concat_conds': concat_conds},
        ).images.to(vae.dtype) / vae.config.scaling_factor

    pixels = vae.decode(latents).sample
    pixels = pytorch2numpy(pixels)
    pixels = [resize_without_crop(
        image=p,
        target_width=int(round(input_width * highres_scale / 64.0) * 64),
        target_height=int(round(input_height * highres_scale / 64.0) * 64))
    for p in pixels]

    pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
    latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
    latents = latents.to(device=unet.device, dtype=unet.dtype)

    highres_height, highres_width = latents.shape[2] * 8, latents.shape[3] * 8

    fg = resize_without_crop(input_fg, highres_width, highres_height)
    concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor

    latents = i2i_pipe(
        image=latents,
        strength=highres_denoise,
        prompt_embeds=conds,
        negative_prompt_embeds=unconds,
        width=highres_width,
        height=highres_height,
        num_inference_steps=int(round(steps / highres_denoise)),
        num_images_per_prompt=num_samples,
        generator=rng,
        output_type='latent',
        guidance_scale=cfg,
        cross_attention_kwargs={'concat_conds': concat_conds},
    ).images.to(vae.dtype) / vae.config.scaling_factor

    pixels = vae.decode(latents).sample
    pixels = pytorch2numpy(pixels)
    
    # Resize back to input dimensions
    pixels = [resize_without_crop(p, input_width, input_height) for p in pixels]
    pixels = np.stack(pixels)

    return pixels

def extract_foreground(image):
    if image is None:
        return None, gr.update(visible=True), gr.update(visible=True)
    logging.info(f"Input image shape: {image.shape}, dtype: {image.dtype}")
    result, rgba = run_rmbg(image)
    logging.info(f"Result shape: {result.shape}, dtype: {result.dtype}")
    logging.info(f"RGBA shape: {rgba.shape}, dtype: {rgba.dtype}")
    return result, gr.update(visible=True), gr.update(visible=True)

def update_extracted_fg_height(selected_image: gr.SelectData):
    if selected_image:
        # Get the height of the selected image
        height = selected_image.value['image']['shape'][0]  # Assuming the image is in numpy format
        return gr.update(height=height)  # Update the height of extracted_fg
    return gr.update(height=480)  # Default height if no image is selected

@torch.inference_mode()
def process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
    clear_memory()
    bg_source = BGSource(bg_source)

    if bg_source == BGSource.UPLOAD:
        pass
    elif bg_source == BGSource.UPLOAD_FLIP:
        input_bg = np.fliplr(input_bg)
    elif bg_source == BGSource.GREY:
        input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
    elif bg_source == BGSource.LEFT:
        gradient = np.linspace(224, 32, image_width)
        image = np.tile(gradient, (image_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.RIGHT:
        gradient = np.linspace(32, 224, image_width)
        image = np.tile(gradient, (image_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.TOP:
        gradient = np.linspace(224, 32, image_height)[:, None]
        image = np.tile(gradient, (1, image_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.BOTTOM:
        gradient = np.linspace(32, 224, image_height)[:, None]
        image = np.tile(gradient, (1, image_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    else:
        raise 'Wrong background source!'

    rng = torch.Generator(device=device).manual_seed(seed)

    fg = resize_and_center_crop(input_fg, image_width, image_height)
    bg = resize_and_center_crop(input_bg, image_width, image_height)
    concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
    concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)

    conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)

    latents = t2i_pipe(
        prompt_embeds=conds,
        negative_prompt_embeds=unconds,
        width=image_width,
        height=image_height,
        num_inference_steps=steps,
        num_images_per_prompt=num_samples,
        generator=rng,
        output_type='latent',
        guidance_scale=cfg,
        cross_attention_kwargs={'concat_conds': concat_conds},
    ).images.to(vae.dtype) / vae.config.scaling_factor

    pixels = vae.decode(latents).sample
    pixels = pytorch2numpy(pixels)
    pixels = [resize_without_crop(
        image=p,
        target_width=int(round(image_width * highres_scale / 64.0) * 64),
        target_height=int(round(image_height * highres_scale / 64.0) * 64))
    for p in pixels]

    pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
    latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
    latents = latents.to(device=unet.device, dtype=unet.dtype)

    image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
    fg = resize_and_center_crop(input_fg, image_width, image_height)
    bg = resize_and_center_crop(input_bg, image_width, image_height)
    concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
    concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)

    latents = i2i_pipe(
        image=latents,
        strength=highres_denoise,
        prompt_embeds=conds,
        negative_prompt_embeds=unconds,
        width=image_width,
        height=image_height,
        num_inference_steps=int(round(steps / highres_denoise)),
        num_images_per_prompt=num_samples,
        generator=rng,
        output_type='latent',
        guidance_scale=cfg,
        cross_attention_kwargs={'concat_conds': concat_conds},
    ).images.to(vae.dtype) / vae.config.scaling_factor

    pixels = vae.decode(latents).sample
    pixels = pytorch2numpy(pixels, quant=False)

    clear_memory()
    return pixels, [fg, bg]


@torch.inference_mode()
def process_relight(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source):
    logging.info(f"Input foreground shape: {input_fg.shape}, dtype: {input_fg.dtype}")
    results = process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source)
    logging.info(f"Results shape: {results.shape}, dtype: {results.dtype}")
    return results



@torch.inference_mode()
def process_relight_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
    bg_source = BGSource(bg_source)

    # bg_source = "Use Background Image"
    
    # Convert numerical inputs to appropriate types
    image_width = int(image_width)
    image_height = int(image_height)
    num_samples = int(num_samples)
    seed = int(seed)
    steps = int(steps)
    cfg = float(cfg)
    highres_scale = float(highres_scale)
    highres_denoise = float(highres_denoise)

    if bg_source == BGSource.UPLOAD:
        pass
    elif bg_source == BGSource.UPLOAD_FLIP:
        input_bg = np.fliplr(input_bg)
    elif bg_source == BGSource.GREY:
        input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
    elif bg_source == BGSource.LEFT:
        gradient = np.linspace(224, 32, image_width)
        image = np.tile(gradient, (image_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.RIGHT:
        gradient = np.linspace(32, 224, image_width)
        image = np.tile(gradient, (image_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.TOP:
        gradient = np.linspace(224, 32, image_height)[:, None]
        image = np.tile(gradient, (1, image_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.BOTTOM:
        gradient = np.linspace(32, 224, image_height)[:, None]
        image = np.tile(gradient, (1, image_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    else:
        raise ValueError('Wrong background source!')
    
    input_fg, matting = run_rmbg(input_fg)
    results, extra_images = process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source)
    results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results]
    final_results = results + extra_images

    # Save the generated images
    save_images(results, prefix="relight")
    
    return results


quick_prompts = [
    'sunshine from window',
    'golden time',
    'natural lighting',
    'warm atmosphere, at home, bedroom',
    'shadow from window',
    'soft studio lighting',
    'home atmosphere, cozy bedroom illumination',
]
quick_prompts = [[x] for x in quick_prompts]


quick_subjects = [
    'modern sofa, high quality leather',
    'elegant dining table, polished wood',
    'luxurious bed, premium mattress',
    'minimalist office desk, clean design',
    'vintage wooden cabinet, antique finish',
]
quick_subjects = [[x] for x in quick_subjects]


class BGSource(Enum):
    UPLOAD = "Use Background Image"
    UPLOAD_FLIP = "Use Flipped Background Image"
    LEFT = "Left Light"
    RIGHT = "Right Light"
    TOP = "Top Light"
    BOTTOM = "Bottom Light"
    GREY = "Ambient"

# Add save function
def save_images(images, prefix="relight"):
    # Create output directory if it doesn't exist
    output_dir = Path("outputs")
    output_dir.mkdir(exist_ok=True)
    
    # Create timestamp for unique filenames
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    
    saved_paths = []
    for i, img in enumerate(images):
        if isinstance(img, np.ndarray):
            # Convert to PIL Image if numpy array
            img = Image.fromarray(img)
        
        # Create filename with timestamp
        filename = f"{prefix}_{timestamp}_{i+1}.png"
        filepath = output_dir / filename
        
        # Save image
        img.save(filepath)


    # print(f"Saved {len(saved_paths)} images to {output_dir}")
    return saved_paths


class MaskMover:
    def __init__(self):
        self.extracted_fg = None
        self.original_fg = None  # Store original foreground
        
    def set_extracted_fg(self, fg_image):
        """Store the extracted foreground with alpha channel"""
        if isinstance(fg_image, np.ndarray):
            self.extracted_fg = fg_image.copy()
            self.original_fg = fg_image.copy()
        else:
            self.extracted_fg = np.array(fg_image)
            self.original_fg = np.array(fg_image)
        return self.extracted_fg
    
    def create_composite(self, background, x_pos, y_pos, scale=1.0):
        """Create composite with foreground at specified position"""
        if self.original_fg is None or background is None:
            return background
        
        # Convert inputs to PIL Images
        if isinstance(background, np.ndarray):
            bg = Image.fromarray(background).convert('RGBA')
        else:
            bg = background.convert('RGBA')
        
        if isinstance(self.original_fg, np.ndarray):
            fg = Image.fromarray(self.original_fg).convert('RGBA')
        else:
            fg = self.original_fg.convert('RGBA')
        
        # Scale the foreground size
        new_width = int(fg.width * scale)
        new_height = int(fg.height * scale)
        fg = fg.resize((new_width, new_height), Image.LANCZOS)
        
        # Center the scaled foreground at the position
        x = int(x_pos - new_width / 2)
        y = int(y_pos - new_height / 2)
        
        # Create composite
        result = bg.copy()
        result.paste(fg, (x, y), fg)  # Use fg as the mask (requires fg to be in 'RGBA' mode)
        
        return np.array(result.convert('RGB'))  # Convert back to 'RGB' if needed
        
def get_depth(image):
    if image is None:
        return None
    # Convert from PIL/gradio format to cv2
    raw_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    # Get depth map
    depth = model.infer_image(raw_img) # HxW raw depth map
    # Normalize depth for visualization
    depth = ((depth - depth.min()) / (depth.max() - depth.min()) * 255).astype(np.uint8)
    # Convert to RGB for display
    depth_colored = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)
    depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
    return Image.fromarray(depth_colored)


from PIL import Image

def compress_image(image):
    # Convert Gradio image (numpy array) to PIL Image
    img = Image.fromarray(image)
    
    # Resize image if dimensions are too large
    max_size = 1024  # Maximum dimension size
    if img.width > max_size or img.height > max_size:
        ratio = min(max_size/img.width, max_size/img.height)
        new_size = (int(img.width * ratio), int(img.height * ratio))
        img = img.resize(new_size, Image.Resampling.LANCZOS)
    
    quality = 95  # Start with high quality
    img.save("compressed_image.jpg", "JPEG", quality=quality)  # Initial save
    
    # Check file size and adjust quality if necessary
    while os.path.getsize("compressed_image.jpg") > 100 * 1024:  # 100KB limit
        quality -= 5  # Decrease quality
        img.save("compressed_image.jpg", "JPEG", quality=quality)
        if quality < 20:  # Prevent quality from going too low
            break
    
    # Convert back to numpy array for Gradio
    compressed_img = np.array(Image.open("compressed_image.jpg"))
    return compressed_img

def use_orientation(selected_image:gr.SelectData):
    return selected_image.value['image']['path']
    

@spaces.GPU(duration=60)
@torch.inference_mode
def process_image(input_image, input_text):
    """Main processing function for the Gradio interface"""

    # Initialize configs
    API_TOKEN = "9c8c865e10ec1821bea79d9fa9dc8720"
    SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
    SAM2_MODEL_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)), "configs/sam2_hiera_l.yaml")
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
    OUTPUT_DIR = Path("outputs/grounded_sam2_dinox_demo")
    OUTPUT_DIR.mkdir(parents=True, exist_ok=True)



    # Initialize DDS client
    config = Config(API_TOKEN)
    client = Client(config)

    # Process classes from text prompt
    classes = [x.strip().lower() for x in input_text.split('.') if x]
    class_name_to_id = {name: id for id, name in enumerate(classes)}
    class_id_to_name = {id: name for name, id in class_name_to_id.items()}

    # Save input image to temp file and get URL
    with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmpfile:
        cv2.imwrite(tmpfile.name, input_image)
        image_url = client.upload_file(tmpfile.name)
    os.remove(tmpfile.name)

    # Process detection results
    input_boxes = []
    masks = []
    confidences = []
    class_names = []
    class_ids = []

    if len(input_text) == 0:
        task = DinoxTask(
        image_url=image_url,
        prompts=[TextPrompt(text="<prompt_free>")],
        # targets=[DetectionTarget.BBox, DetectionTarget.Mask]
        )
        
        client.run_task(task)
        predictions = task.result.objects
        classes = [pred.category for pred in predictions]
        classes = list(set(classes))
        class_name_to_id = {name: id for id, name in enumerate(classes)}
        class_id_to_name = {id: name for name, id in class_name_to_id.items()}

        for idx, obj in enumerate(predictions):
            input_boxes.append(obj.bbox)
            masks.append(DetectionTask.rle2mask(DetectionTask.string2rle(obj.mask.counts), obj.mask.size))  # convert mask to np.array using DDS API
            confidences.append(obj.score)
            cls_name = obj.category.lower().strip()
            class_names.append(cls_name)
            class_ids.append(class_name_to_id[cls_name])

        boxes = np.array(input_boxes)
        masks = np.array(masks)
        class_ids = np.array(class_ids)
        labels = [
            f"{class_name} {confidence:.2f}"
            for class_name, confidence
            in zip(class_names, confidences)
        ]
        detections = sv.Detections(
            xyxy=boxes,
            mask=masks.astype(bool),
            class_id=class_ids
        )

        box_annotator = sv.BoxAnnotator()
        label_annotator = sv.LabelAnnotator()
        mask_annotator = sv.MaskAnnotator()

        annotated_frame = input_image.copy()
        annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections)
        annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
        annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)

        # Create transparent mask for first detected object
        if len(detections) > 0:
            # Get first mask
            first_mask = detections.mask[0]
            
            # Get original RGB image
            img = input_image.copy()
            H, W, C = img.shape
            
            # Create RGBA image
            alpha = np.zeros((H, W, 1), dtype=np.uint8)
            alpha[first_mask] = 255
            rgba = np.dstack((img, alpha)).astype(np.uint8)
            
            # Crop to mask bounds to minimize image size
            # y_indices, x_indices = np.where(first_mask)
            # y_min, y_max = y_indices.min(), y_indices.max()
            # x_min, x_max = x_indices.min(), x_indices.max()
            
            # Crop the RGBA image
            #cropped_rgba = rgba[y_min:y_max+1, x_min:x_max+1]
            
            # Set extracted foreground for mask mover
            # mask_mover.set_extracted_fg(cropped_rgba)
            
            return annotated_frame, rgba, gr.update(visible=False), gr.update(visible=False)

    
    else:
        # Run DINO-X detection
        task = DinoxTask(
            image_url=image_url,
            prompts=[TextPrompt(text=input_text)],
            targets=[DetectionTarget.BBox, DetectionTarget.Mask]
        )
        
        client.run_task(task)
        result = task.result
        objects = result.objects
    
    
    
        # for obj in objects:
        #     input_boxes.append(obj.bbox)
        #     confidences.append(obj.score)
        #     cls_name = obj.category.lower().strip()
        #     class_names.append(cls_name)
        #     class_ids.append(class_name_to_id[cls_name])
    
        # input_boxes = np.array(input_boxes)
        # class_ids = np.array(class_ids)

        predictions = task.result.objects
        classes = [x.strip().lower() for x in input_text.split('.') if x]
        class_name_to_id = {name: id for id, name in enumerate(classes)}
        class_id_to_name = {id: name for name, id in class_name_to_id.items()}
        
        boxes = []
        masks = []
        confidences = []
        class_names = []
        class_ids = []
        
        for idx, obj in enumerate(predictions):
            boxes.append(obj.bbox)
            masks.append(DetectionTask.rle2mask(DetectionTask.string2rle(obj.mask.counts), obj.mask.size))  # convert mask to np.array using DDS API
            confidences.append(obj.score)
            cls_name = obj.category.lower().strip()
            class_names.append(cls_name)
            class_ids.append(class_name_to_id[cls_name])

        boxes = np.array(boxes)
        masks = np.array(masks)
        class_ids = np.array(class_ids)
        labels = [
            f"{class_name} {confidence:.2f}"
            for class_name, confidence
            in zip(class_names, confidences)
        ]
        
        # Initialize SAM2
        # torch.autocast(device_type=DEVICE, dtype=torch.bfloat16).__enter__()
        # if torch.cuda.get_device_properties(0).major >= 8:
        #     torch.backends.cuda.matmul.allow_tf32 = True
        #     torch.backends.cudnn.allow_tf32 = True
    
        # sam2_model = build_sam2(SAM2_MODEL_CONFIG, SAM2_CHECKPOINT, device=DEVICE)
        # sam2_predictor = SAM2ImagePredictor(sam2_model)
        # sam2_predictor.set_image(input_image)
    
        # sam2_predictor = run_sam_inference(SAM_IMAGE_MODEL, input_image, detections)
    
    
        # Get masks from SAM2
        # masks, scores, logits = sam2_predictor.predict(
        #     point_coords=None,
        #     point_labels=None,
        #     box=input_boxes,
        #     multimask_output=False,
        # )
        
        if masks.ndim == 4:
            masks = masks.squeeze(1)
    
        # Create visualization
        # labels = [f"{class_name} {confidence:.2f}" 
        #          for class_name, confidence in zip(class_names, confidences)]
    
        # detections = sv.Detections(
        #     xyxy=input_boxes,
        #     mask=masks.astype(bool),
        #     class_id=class_ids
        # )

        detections = sv.Detections(
        xyxy = boxes,
        mask = masks.astype(bool),
        class_id = class_ids,
    )
        
        box_annotator = sv.BoxAnnotator()
        label_annotator = sv.LabelAnnotator()
        mask_annotator = sv.MaskAnnotator()
    
        annotated_frame = input_image.copy()
        annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections)
        annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
        annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
    
        # Create transparent mask for first detected object
        if len(detections) > 0:
            # Get first mask
            first_mask = detections.mask[0]
            
            # Get original RGB image
            img = input_image.copy()
            H, W, C = img.shape
            
            # Create RGBA image
            alpha = np.zeros((H, W, 1), dtype=np.uint8)
            alpha[first_mask] = 255
            rgba = np.dstack((img, alpha)).astype(np.uint8)
            
            # Crop to mask bounds to minimize image size
            y_indices, x_indices = np.where(first_mask)
            y_min, y_max = y_indices.min(), y_indices.max()
            x_min, x_max = x_indices.min(), x_indices.max()
            
            # Crop the RGBA image
            cropped_rgba = rgba[y_min:y_max+1, x_min:x_max+1]
            
            # Set extracted foreground for mask mover
            # mask_mover.set_extracted_fg(cropped_rgba)
            
            return annotated_frame, cropped_rgba, gr.update(visible=False), gr.update(visible=False)
        return annotated_frame, None, gr.update(visible=False), gr.update(visible=False)
        

block = gr.Blocks().queue()
with block:
    with gr.Tab("Text"):
        with gr.Row():
            gr.Markdown("## Product Placement from Text")
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_fg = gr.Image(type="numpy", label="Image", height=480)
                with gr.Row():
                    with gr.Group():
                        find_objects_button = gr.Button(value="(Option 1) Segment Object from text")
                        text_prompt = gr.Textbox(
                                label="Text Prompt", 
                                placeholder="Enter object classes separated by periods (e.g. 'car . person .'), leave empty to get all objects",
                                value=""
                            )
                    extract_button = gr.Button(value="Remove Background")
                with gr.Row():
                    extracted_objects = gr.Image(type="numpy", label="Extracted Foreground", height=480)
                    extracted_fg = gr.Image(type="numpy", label="Extracted Foreground", height=480)
                    angles_fg = gr.Image(type="pil", label="Converted Foreground", height=480, visible=False)

                with gr.Row():
                    with gr.Group():
                        run_button = gr.Button("Generate alternative angles")
                        orientation_result = gr.Gallery(
                                    label="Result",
                                    show_label=False,
                                    columns=[3],
                                    rows=[2],
                                    object_fit="fill",
                                    height="auto",
                                    allow_preview=False,
                                )                

                    if orientation_result:
                        #selected = gr.Number(visible=False)
                        orientation_result.select(use_orientation, inputs=None, outputs=extracted_fg)
                    
                    # output_bg = gr.Image(type="numpy", label="Preprocessed Foreground", height=480)
                with gr.Group():
                    prompt = gr.Textbox(label="Prompt")
                    bg_source = gr.Radio(choices=[e.value for e in list(BGSource)[2:]],
                                        value=BGSource.LEFT.value,
                                        label="Lighting Preference (Initial Latent)", type='value')
                example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt])
                example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Lighting Quick List', samples_per_page=1000, components=[prompt])
                relight_button = gr.Button(value="Relight")

                with gr.Group(visible=False):
                    with gr.Row():
                        num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                        seed = gr.Number(label="Seed", value=12345, precision=0)

                    with gr.Row():
                        image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64)
                        image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64)

                with gr.Accordion("Advanced options", open=False):
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=15, step=1)
                    cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=2, step=0.01, visible=False)
                    lowres_denoise = gr.Slider(label="Lowres Denoise (for initial latent)", minimum=0.1, maximum=1.0, value=0.9, step=0.01)
                    highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01)
                    highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=1.0, value=0.5, step=0.01)
                    a_prompt = gr.Textbox(label="Added Prompt", value='best quality', visible=False)
                    n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality', visible=False)
                    x_slider = gr.Slider(
                        minimum=0,
                        maximum=1000,
                        label="X Position",
                        value=500,
                        visible=False
                    )
                    y_slider = gr.Slider(
                        minimum=0,
                        maximum=1000,
                        label="Y Position",
                        value=500,
                        visible=False
                    )
            with gr.Column():
                result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs')
        with gr.Row():
            dummy_image_for_outputs = gr.Image(visible=False, label='Result')
            # gr.Examples(
            #     fn=lambda *args: ([args[-1]], None),
            #     examples=db_examples.foreground_conditioned_examples,
            #     inputs=[
            #         input_fg, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs
            #     ],
            #     outputs=[result_gallery, output_bg],
            #     run_on_click=True, examples_per_page=1024
            # )
        ips = [extracted_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source]
        relight_button.click(fn=process_relight, inputs=ips, outputs=[result_gallery])
        example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False)
        example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False)


        def convert_to_pil(image):
            try:
                logging.info(f"Input image shape: {image.shape}, dtype: {image.dtype}")
                image = image.astype(np.uint8)
                logging.info(f"Converted image shape: {image.shape}, dtype: {image.dtype}")
                return image
            except Exception as e:
                logging.error(f"Error converting image: {e}")
            return image
                      
        run_button.click(
            fn=convert_to_pil, 
            inputs=extracted_fg,  # This is already RGBA with removed background
            outputs=angles_fg
        ).then(
            fn=infer,
            inputs=[
                text_prompt,
                extracted_fg,  # Already processed RGBA image
            ],
            outputs=[orientation_result],
        )
        
        find_objects_button.click(
            fn=process_image,
            inputs=[input_fg, text_prompt],
            outputs=[extracted_objects, extracted_fg]
            )
        
        extract_button.click(
            fn=extract_foreground,
            inputs=[input_fg],
            outputs=[extracted_fg, x_slider, y_slider]
        )

block.launch(server_name='0.0.0.0', share=False)