Ashoka74's picture
Upload 13 files
cd949a9 verified
from typing import List, Optional, Tuple
import numpy as np
import torch
from torch.nn import functional as F
def get_position_map_from_depth(depth, mask, intrinsics, extrinsics, image_wh=None):
"""Compute the position map from the depth map and the camera parameters for a batch of views.
Args:
depth (torch.Tensor): The depth maps with the shape (B, H, W, 1).
mask (torch.Tensor): The masks with the shape (B, H, W, 1).
intrinsics (torch.Tensor): The camera intrinsics matrices with the shape (B, 3, 3).
extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4).
image_wh (Tuple[int, int]): The image width and height.
Returns:
torch.Tensor: The position maps with the shape (B, H, W, 3).
"""
if image_wh is None:
image_wh = depth.shape[2], depth.shape[1]
B, H, W, _ = depth.shape
depth = depth.squeeze(-1)
u_coord, v_coord = torch.meshgrid(
torch.arange(image_wh[0]), torch.arange(image_wh[1]), indexing="xy"
)
u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
# Compute the position map by back-projecting depth pixels to 3D space
x = (
(u_coord - intrinsics[:, 0, 2].unsqueeze(-1).unsqueeze(-1))
* depth
/ intrinsics[:, 0, 0].unsqueeze(-1).unsqueeze(-1)
)
y = (
(v_coord - intrinsics[:, 1, 2].unsqueeze(-1).unsqueeze(-1))
* depth
/ intrinsics[:, 1, 1].unsqueeze(-1).unsqueeze(-1)
)
z = depth
# Concatenate to form the 3D coordinates in the camera frame
camera_coords = torch.stack([x, y, z], dim=-1)
# Apply the extrinsic matrix to get coordinates in the world frame
coords_homogeneous = torch.nn.functional.pad(
camera_coords, (0, 1), "constant", 1.0
) # Add a homogeneous coordinate
world_coords = torch.matmul(
coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2)
).view(B, H, W, 4)
# Apply the mask to the position map
position_map = world_coords[..., :3] * mask
return position_map
def get_position_map_from_depth_ortho(
depth, mask, extrinsics, ortho_scale, image_wh=None
):
"""Compute the position map from the depth map and the camera parameters for a batch of views
using orthographic projection with a given ortho_scale.
Args:
depth (torch.Tensor): The depth maps with the shape (B, H, W, 1).
mask (torch.Tensor): The masks with the shape (B, H, W, 1).
extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4).
ortho_scale (torch.Tensor): The scaling factor for the orthographic projection with the shape (B, 1, 1, 1).
image_wh (Tuple[int, int]): Optional. The image width and height.
Returns:
torch.Tensor: The position maps with the shape (B, H, W, 3).
"""
if image_wh is None:
image_wh = depth.shape[2], depth.shape[1]
B, H, W, _ = depth.shape
depth = depth.squeeze(-1)
# Generating grid of coordinates in the image space
u_coord, v_coord = torch.meshgrid(
torch.arange(0, image_wh[0]), torch.arange(0, image_wh[1]), indexing="xy"
)
u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1)
# Compute the position map using orthographic projection with ortho_scale
x = (u_coord - image_wh[0] / 2) / ortho_scale / image_wh[0]
y = (v_coord - image_wh[1] / 2) / ortho_scale / image_wh[1]
z = depth
# Concatenate to form the 3D coordinates in the camera frame
camera_coords = torch.stack([x, y, z], dim=-1)
# Apply the extrinsic matrix to get coordinates in the world frame
coords_homogeneous = torch.nn.functional.pad(
camera_coords, (0, 1), "constant", 1.0
) # Add a homogeneous coordinate
world_coords = torch.matmul(
coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2)
).view(B, H, W, 4)
# Apply the mask to the position map
position_map = world_coords[..., :3] * mask
return position_map
def get_opencv_from_blender(matrix_world, fov=None, image_size=None):
# convert matrix_world to opencv format extrinsics
opencv_world_to_cam = matrix_world.inverse()
opencv_world_to_cam[1, :] *= -1
opencv_world_to_cam[2, :] *= -1
R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3]
if fov is None: # orthographic camera
return R, T
R, T = R.unsqueeze(0), T.unsqueeze(0)
# convert fov to opencv format intrinsics
focal = 1 / np.tan(fov / 2)
intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32)
opencv_cam_matrix = (
torch.from_numpy(intrinsics).unsqueeze(0).float().to(matrix_world.device)
)
opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2]).to(
matrix_world.device
)
opencv_cam_matrix[:, [0, 1], [0, 1]] *= image_size / 2
return R, T, opencv_cam_matrix
def get_ray_directions(
H: int,
W: int,
focal: float,
principal: Optional[Tuple[float, float]] = None,
use_pixel_centers: bool = True,
) -> torch.Tensor:
"""
Get ray directions for all pixels in camera coordinate.
Args:
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
pixel_center = 0.5 if use_pixel_centers else 0
cx, cy = W / 2, H / 2 if principal is None else principal
i, j = torch.meshgrid(
torch.arange(W, dtype=torch.float32) + pixel_center,
torch.arange(H, dtype=torch.float32) + pixel_center,
indexing="xy",
)
directions = torch.stack(
[(i - cx) / focal, -(j - cy) / focal, -torch.ones_like(i)], -1
)
return F.normalize(directions, dim=-1)
def get_rays(
directions: torch.Tensor, c2w: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Get ray origins and directions from camera coordinates to world coordinates
Args:
directions: (H, W, 3) ray directions in camera coordinates
c2w: (4, 4) camera-to-world transformation matrix
Outputs:
rays_o, rays_d: (H, W, 3) ray origins and directions in world coordinates
"""
# Rotate ray directions from camera coordinate to the world coordinate
rays_d = directions @ c2w[:3, :3].T
rays_o = c2w[:3, 3].expand(rays_d.shape)
return rays_o, rays_d
def compute_plucker_embed(
c2w: torch.Tensor, image_width: int, image_height: int, focal: float
) -> torch.Tensor:
"""
Computes Plucker coordinates for a camera.
Args:
c2w: (4, 4) camera-to-world transformation matrix
image_width: Image width
image_height: Image height
focal: Focal length of the camera
Returns:
plucker: (6, H, W) Plucker embedding
"""
directions = get_ray_directions(image_height, image_width, focal)
rays_o, rays_d = get_rays(directions, c2w)
# Cross product to get Plucker coordinates
cross = torch.cross(rays_o, rays_d, dim=-1)
plucker = torch.cat((rays_d, cross), dim=-1)
return plucker.permute(2, 0, 1)
def get_plucker_embeds_from_cameras(
c2w: List[torch.Tensor], fov: List[float], image_size: int
) -> torch.Tensor:
"""
Given lists of camera transformations and fov, returns the batched plucker embeddings.
Args:
c2w: list of camera-to-world transformation matrices
fov: list of field of view values
image_size: size of the image
Returns:
plucker_embeds: (B, 6, H, W) batched plucker embeddings
"""
plucker_embeds = []
for cam_matrix, cam_fov in zip(c2w, fov):
focal = 0.5 * image_size / np.tan(0.5 * cam_fov)
plucker = compute_plucker_embed(cam_matrix, image_size, image_size, focal)
plucker_embeds.append(plucker)
return torch.stack(plucker_embeds)
def get_plucker_embeds_from_cameras_ortho(
c2w: List[torch.Tensor], ortho_scale: List[float], image_size: int
):
"""
Given lists of camera transformations and fov, returns the batched plucker embeddings.
Parameters:
c2w: list of camera-to-world transformation matrices
fov: list of field of view values
image_size: size of the image
Returns:
plucker_embeds: plucker embeddings (B, 6, H, W)
"""
plucker_embeds = []
# compute pairwise mask and plucker embeddings
for cam_matrix, scale in zip(c2w, ortho_scale):
# blender to opencv to pytorch3d
R, T = get_opencv_from_blender(cam_matrix)
cam_pos = -R.T @ T
view_dir = R.T @ torch.tensor([0, 0, 1]).float().to(cam_matrix.device)
# normalize camera position
cam_pos = F.normalize(cam_pos, dim=0)
plucker = torch.concat([view_dir, cam_pos])
plucker = plucker.unsqueeze(-1).unsqueeze(-1).repeat(1, image_size, image_size)
plucker_embeds.append(plucker)
plucker_embeds = torch.stack(plucker_embeds)
return plucker_embeds