import argparse import numpy as np import torch from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel from PIL import Image from torchvision import transforms from tqdm import tqdm from transformers import AutoModelForImageSegmentation from mvadapter.pipelines.pipeline_mvadapter_i2mv_sdxl import MVAdapterI2MVSDXLPipeline from mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler from mvadapter.utils import ( get_orthogonal_camera, get_plucker_embeds_from_cameras_ortho, make_image_grid, ) def prepare_pipeline( base_model, vae_model, unet_model, lora_model, adapter_path, scheduler, num_views, device, dtype, ): # Load vae and unet if provided pipe_kwargs = {} if vae_model is not None: pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model) if unet_model is not None: pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model) # Prepare pipeline pipe: MVAdapterI2MVSDXLPipeline pipe = MVAdapterI2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs) # Load scheduler if provided scheduler_class = None if scheduler == "ddpm": scheduler_class = DDPMScheduler elif scheduler == "lcm": scheduler_class = LCMScheduler pipe.scheduler = ShiftSNRScheduler.from_scheduler( pipe.scheduler, shift_mode="interpolated", shift_scale=8.0, scheduler_class=scheduler_class, ) pipe.init_custom_adapter(num_views=num_views) pipe.load_custom_adapter( adapter_path, weight_name="mvadapter_i2mv_sdxl.safetensors" ) pipe.to(device=device, dtype=dtype) pipe.cond_encoder.to(device=device, dtype=dtype) # load lora if provided if lora_model is not None: model_, name_ = lora_model.rsplit("/", 1) pipe.load_lora_weights(model_, weight_name=name_) # vae slicing for lower memory usage pipe.enable_vae_slicing() return pipe # def remove_bg(image, net, transform, device): # image_size = image.size # input_images = transform(image).unsqueeze(0).to(device) # with torch.no_grad(): # preds = net(input_images)[-1].sigmoid().cpu() # pred = preds[0].squeeze() # pred_pil = transforms.ToPILImage()(pred) # mask = pred_pil.resize(image_size) # image.putalpha(mask) # return image def remove_bg(image: Image.Image, net, transform, device, mask: Image.Image = None): """ Applies a pre-existing mask to an image to make the background transparent. Args: image (PIL.Image.Image): The input image. net: Pre-trained neural network (not used but kept for compatibility). transform: Image transformation object (not used but kept for compatibility). device: Device used for inference (not used but kept for compatibility). mask (PIL.Image.Image, optional): The mask to use. Should be the same size as the input image, with values between 0 and 255 (or 0-1). If None, will return image with no changes. Returns: PIL.Image.Image: The modified image with transparent background. """ if mask is None: return image image_size = image.size if mask.size != image_size: mask = mask.resize(image_size) # Resizing the mask if it is not the same size as image image.putalpha(mask) return image def preprocess_image(image: Image.Image, height, width): image = np.array(image) alpha = image[..., 3] > 0 H, W = alpha.shape # get the bounding box of alpha y, x = np.where(alpha) y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H) x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W) image_center = image[y0:y1, x0:x1] # resize the longer side to H * 0.9 H, W, _ = image_center.shape if H > W: W = int(W * (height * 0.9) / H) H = int(height * 0.9) else: H = int(H * (width * 0.9) / W) W = int(width * 0.9) image_center = np.array(Image.fromarray(image_center).resize((W, H))) # pad to H, W start_h = (height - H) // 2 start_w = (width - W) // 2 image = np.zeros((height, width, 4), dtype=np.uint8) image[start_h : start_h + H, start_w : start_w + W] = image_center image = image.astype(np.float32) / 255.0 image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5 image = (image * 255).clip(0, 255).astype(np.uint8) image = Image.fromarray(image) return image def run_pipeline( pipe, num_views, text, image, height, width, num_inference_steps, guidance_scale, seed, remove_bg_fn=None, reference_conditioning_scale=1.0, negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast", lora_scale=1.0, device="cuda", ): # Prepare cameras cameras = get_orthogonal_camera( elevation_deg=[0, 0, 0, 0, 0, 0], distance=[1.8] * num_views, left=-0.55, right=0.55, bottom=-0.55, top=0.55, azimuth_deg=[x - 90 for x in [0, 45, 90, 180, 270, 315]], device=device, ) plucker_embeds = get_plucker_embeds_from_cameras_ortho( cameras.c2w, [1.1] * num_views, width ) control_images = ((plucker_embeds + 1.0) / 2.0).clamp(0, 1) # Prepare image reference_image = Image.open(image) if isinstance(image, str) else image if remove_bg_fn is not None: # reference_image = remove_bg_fn(reference_image) reference_image = preprocess_image(reference_image, height, width) elif reference_image.mode == "RGBA": reference_image = preprocess_image(reference_image, height, width) pipe_kwargs = {} if seed != -1 and isinstance(seed, int): pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed) images = pipe( text, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_views, control_image=control_images, control_conditioning_scale=1.0, reference_image=reference_image, reference_conditioning_scale=reference_conditioning_scale, negative_prompt=negative_prompt, cross_attention_kwargs={"scale": lora_scale}, **pipe_kwargs, ).images return images, reference_image if __name__ == "__main__": parser = argparse.ArgumentParser() # Models parser.add_argument( "--base_model", type=str, default="stabilityai/stable-diffusion-xl-base-1.0" ) parser.add_argument( "--vae_model", type=str, default="madebyollin/sdxl-vae-fp16-fix" ) parser.add_argument("--unet_model", type=str, default=None) parser.add_argument("--scheduler", type=str, default=None) parser.add_argument("--lora_model", type=str, default=None) parser.add_argument("--adapter_path", type=str, default="huanngzh/mv-adapter") parser.add_argument("--num_views", type=int, default=6) # Device parser.add_argument("--device", type=str, default="cuda") # Inference parser.add_argument("--image", type=str, required=True) parser.add_argument("--text", type=str, default="high quality") parser.add_argument("--num_inference_steps", type=int, default=50) parser.add_argument("--guidance_scale", type=float, default=3.0) parser.add_argument("--seed", type=int, default=-1) parser.add_argument("--lora_scale", type=float, default=1.0) parser.add_argument("--reference_conditioning_scale", type=float, default=1.0) parser.add_argument( "--negative_prompt", type=str, default="watermark, ugly, deformed, noisy, blurry, low contrast", ) parser.add_argument("--output", type=str, default="output.png") # Extra parser.add_argument("--remove_bg", action="store_true", help="Remove background") args = parser.parse_args() pipe = prepare_pipeline( base_model=args.base_model, vae_model=args.vae_model, unet_model=args.unet_model, lora_model=args.lora_model, adapter_path=args.adapter_path, scheduler=args.scheduler, num_views=args.num_views, device=args.device, dtype=torch.float16, ) if args.remove_bg: birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to(args.device) transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, args.device) else: remove_bg_fn = None images, reference_image = run_pipeline( pipe, num_views=args.num_views, text=args.text, image=args.image, height=768, width=768, num_inference_steps=args.num_inference_steps, guidance_scale=args.guidance_scale, seed=args.seed, lora_scale=args.lora_scale, reference_conditioning_scale=args.reference_conditioning_scale, negative_prompt=args.negative_prompt, device=args.device, remove_bg_fn=remove_bg_fn, ) make_image_grid(images, rows=1).save(args.output) reference_image.save(args.output.rsplit(".", 1)[0] + "_reference.png")