File size: 18,179 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import math
import torch
from .utils import AnyType
import comfy.model_management
from nodes import MAX_RESOLUTION
import time

any = AnyType("*")

class SimpleMathFloat:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "value": ("FLOAT", { "default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.05 }),
            },
        }

    RETURN_TYPES = ("FLOAT", )
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, value):
        return (float(value), )

class SimpleMathPercent:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "value": ("FLOAT", { "default": 0.0, "min": 0, "max": 1, "step": 0.05 }),
            },
        }

    RETURN_TYPES = ("FLOAT", )
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, value):
        return (float(value), )

class SimpleMathInt:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "value": ("INT", { "default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1 }),
            },
        }

    RETURN_TYPES = ("INT",)
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, value):
        return (int(value), )

class SimpleMathSlider:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "value": ("FLOAT", { "display": "slider", "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001 }),
                "min": ("FLOAT", { "default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }),
                "max": ("FLOAT", { "default": 1.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }),
                "rounding": ("INT", { "default": 0, "min": 0, "max": 10, "step": 1 }),
            },
        }

    RETURN_TYPES = ("FLOAT", "INT",)
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, value, min, max, rounding):
        value = min + value * (max - min)
        
        if rounding > 0:
            value = round(value, rounding)

        return (value, int(value), )

class SimpleMathSliderLowRes:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "value": ("INT", { "display": "slider", "default": 5, "min": 0, "max": 10, "step": 1 }),
                "min": ("FLOAT", { "default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }),
                "max": ("FLOAT", { "default": 1.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }),
                "rounding": ("INT", { "default": 0, "min": 0, "max": 10, "step": 1 }),
            },
        }

    RETURN_TYPES = ("FLOAT", "INT",)
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, value, min, max, rounding):
        value = 0.1 * value
        value = min + value * (max - min)
        if rounding > 0:
            value = round(value, rounding)

        return (value, )

class SimpleMathBoolean:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "value": ("BOOLEAN", { "default": False }),
            },
        }

    RETURN_TYPES = ("BOOLEAN",)
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, value):
        return (value, int(value), )

class SimpleMath:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "optional": {
                "a": (any, { "default": 0.0 }),
                "b": (any, { "default": 0.0 }),
                "c": (any, { "default": 0.0 }),
            },
            "required": {
                "value": ("STRING", { "multiline": False, "default": "" }),
            },
        }

    RETURN_TYPES = ("INT", "FLOAT", )
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, value, a = 0.0, b = 0.0, c = 0.0, d = 0.0):
        import ast
        import operator as op

        h, w = 0.0, 0.0
        if hasattr(a, 'shape'):
            a = list(a.shape)
        if hasattr(b, 'shape'):
            b = list(b.shape)
        if hasattr(c, 'shape'):
            c = list(c.shape)
        if hasattr(d, 'shape'):
            d = list(d.shape)

        if isinstance(a, str):
            a = float(a)
        if isinstance(b, str):
            b = float(b)
        if isinstance(c, str):
            c = float(c)
        if isinstance(d, str):
            d = float(d)
        
        operators = {
            ast.Add: op.add,
            ast.Sub: op.sub,
            ast.Mult: op.mul,
            ast.Div: op.truediv,
            ast.FloorDiv: op.floordiv,
            ast.Pow: op.pow,
            #ast.BitXor: op.xor,
            #ast.BitOr: op.or_,
            #ast.BitAnd: op.and_,
            ast.USub: op.neg,
            ast.Mod: op.mod,
            ast.Eq: op.eq,
            ast.NotEq: op.ne,
            ast.Lt: op.lt,
            ast.LtE: op.le,
            ast.Gt: op.gt,
            ast.GtE: op.ge,
            ast.And: lambda x, y: x and y,
            ast.Or: lambda x, y: x or y,
            ast.Not: op.not_
        }

        op_functions = {
            'min': min,
            'max': max,
            'round': round,
            'sum': sum,
            'len': len,
        }

        def eval_(node):
            if isinstance(node, ast.Num): # number
                return node.n
            elif isinstance(node, ast.Name): # variable
                if node.id == "a":
                    return a
                if node.id == "b":
                    return b
                if node.id == "c":
                    return c
                if node.id == "d":
                    return d
            elif isinstance(node, ast.BinOp): # <left> <operator> <right>
                return operators[type(node.op)](eval_(node.left), eval_(node.right))
            elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1
                return operators[type(node.op)](eval_(node.operand))
            elif isinstance(node, ast.Compare):  # comparison operators
                left = eval_(node.left)
                for op, comparator in zip(node.ops, node.comparators):
                    if not operators[type(op)](left, eval_(comparator)):
                        return 0
                return 1
            elif isinstance(node, ast.BoolOp):  # boolean operators (And, Or)
                values = [eval_(value) for value in node.values]
                return operators[type(node.op)](*values)
            elif isinstance(node, ast.Call): # custom function
                if node.func.id in op_functions:
                    args =[eval_(arg) for arg in node.args]
                    return op_functions[node.func.id](*args)
            elif isinstance(node, ast.Subscript): # indexing or slicing
                value = eval_(node.value)
                if isinstance(node.slice, ast.Constant):
                    return value[node.slice.value]
                else:
                    return 0
            else:
                return 0

        result = eval_(ast.parse(value, mode='eval').body)

        if math.isnan(result):
            result = 0.0
        
        return (round(result), result, )

class SimpleMathDual:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "optional": {
                "a": (any, { "default": 0.0 }),
                "b": (any, { "default": 0.0 }),
                "c": (any, { "default": 0.0 }),
                "d": (any, { "default": 0.0 }),
            },
            "required": {
                "value_1": ("STRING", { "multiline": False, "default": "" }),
                "value_2": ("STRING", { "multiline": False, "default": "" }),
            },
        }
    
    RETURN_TYPES = ("INT", "FLOAT", "INT", "FLOAT", )
    RETURN_NAMES = ("int_1", "float_1", "int_2", "float_2" )
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, value_1, value_2, a = 0.0, b = 0.0, c = 0.0, d = 0.0):
        return SimpleMath().execute(value_1, a, b, c, d) + SimpleMath().execute(value_2, a, b, c, d)

class SimpleMathCondition:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "optional": {
                "a": (any, { "default": 0.0 }),
                "b": (any, { "default": 0.0 }),
                "c": (any, { "default": 0.0 }),
            },
            "required": {
                "evaluate": (any, {"default": 0}),
                "on_true": ("STRING", { "multiline": False, "default": "" }),
                "on_false": ("STRING", { "multiline": False, "default": "" }),
            },
        }
    
    RETURN_TYPES = ("INT", "FLOAT", )
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, evaluate, on_true, on_false, a = 0.0, b = 0.0, c = 0.0):
        return SimpleMath().execute(on_true if evaluate else on_false, a, b, c)

class SimpleCondition:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "evaluate": (any, {"default": 0}),
                "on_true": (any, {"default": 0}),
            },
            "optional": {
                "on_false": (any, {"default": None}),
            },
        }

    RETURN_TYPES = (any,)
    RETURN_NAMES = ("result",)
    FUNCTION = "execute"

    CATEGORY = "essentials/utilities"

    def execute(self, evaluate, on_true, on_false=None):
        from comfy_execution.graph import ExecutionBlocker
        if not evaluate:
            return (on_false if on_false is not None else ExecutionBlocker(None),)

        return (on_true,)

class SimpleComparison:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "a": (any, {"default": 0}),
                "b": (any, {"default": 0}),
                "comparison": (["==", "!=", "<", "<=", ">", ">="],),
            },
        }

    RETURN_TYPES = ("BOOLEAN",)
    FUNCTION = "execute"

    CATEGORY = "essentials/utilities"

    def execute(self, a, b, comparison):
        if comparison == "==":
            return (a == b,)
        elif comparison == "!=":
            return (a != b,)
        elif comparison == "<":
            return (a < b,)
        elif comparison == "<=":
            return (a <= b,)
        elif comparison == ">":
            return (a > b,)
        elif comparison == ">=":
            return (a >= b,)

class ConsoleDebug:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "value": (any, {}),
            },
            "optional": {
                "prefix": ("STRING", { "multiline": False, "default": "Value:" })
            }
        }

    RETURN_TYPES = ()
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"
    OUTPUT_NODE = True

    def execute(self, value, prefix):
        print(f"\033[96m{prefix} {value}\033[0m")

        return (None,)

class DebugTensorShape:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "tensor": (any, {}),
            },
        }

    RETURN_TYPES = ()
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"
    OUTPUT_NODE = True

    def execute(self, tensor):
        shapes = []
        def tensorShape(tensor):
            if isinstance(tensor, dict):
                for k in tensor:
                    tensorShape(tensor[k])
            elif isinstance(tensor, list):
                for i in range(len(tensor)):
                    tensorShape(tensor[i])
            elif hasattr(tensor, 'shape'):
                shapes.append(list(tensor.shape))

        tensorShape(tensor)

        print(f"\033[96mShapes found: {shapes}\033[0m")

        return (None,)

class BatchCount:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "batch": (any, {}),
            },
        }

    RETURN_TYPES = ("INT",)
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, batch):
        count = 0
        if hasattr(batch, 'shape'):
            count = batch.shape[0]
        elif isinstance(batch, dict) and 'samples' in batch:
            count = batch['samples'].shape[0]
        elif isinstance(batch, list) or isinstance(batch, dict):
            count = len(batch)

        return (count, )

class ModelCompile():
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("MODEL",),
                "fullgraph": ("BOOLEAN", { "default": False }),
                "dynamic": ("BOOLEAN", { "default": False }),
                "mode": (["default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],),
            },
        }

    RETURN_TYPES = ("MODEL", )
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, model, fullgraph, dynamic, mode):
        work_model = model.clone()
        torch._dynamo.config.suppress_errors = True
        work_model.add_object_patch("diffusion_model", torch.compile(model=work_model.get_model_object("diffusion_model"), dynamic=dynamic, fullgraph=fullgraph, mode=mode))
        return (work_model, )

class RemoveLatentMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "execute"

    CATEGORY = "essentials/utilities"

    def execute(self, samples):
        s = samples.copy()
        if "noise_mask" in s:
            del s["noise_mask"]

        return (s,)

class SDXLEmptyLatentSizePicker:
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "resolution": (["704x1408 (0.5)","704x1344 (0.52)","768x1344 (0.57)","768x1280 (0.6)","832x1216 (0.68)","832x1152 (0.72)","896x1152 (0.78)","896x1088 (0.82)","960x1088 (0.88)","960x1024 (0.94)","1024x1024 (1.0)","1024x960 (1.07)","1088x960 (1.13)","1088x896 (1.21)","1152x896 (1.29)","1152x832 (1.38)","1216x832 (1.46)","1280x768 (1.67)","1344x768 (1.75)","1344x704 (1.91)","1408x704 (2.0)","1472x704 (2.09)","1536x640 (2.4)","1600x640 (2.5)","1664x576 (2.89)","1728x576 (3.0)",], {"default": "1024x1024 (1.0)"}),
            "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
            "width_override": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
            "height_override": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
            }}

    RETURN_TYPES = ("LATENT","INT","INT",)
    RETURN_NAMES = ("LATENT","width","height",)
    FUNCTION = "execute"
    CATEGORY = "essentials/utilities"

    def execute(self, resolution, batch_size, width_override=0, height_override=0):
        width, height = resolution.split(" ")[0].split("x")
        width = width_override if width_override > 0 else int(width)
        height = height_override if height_override > 0 else int(height)

        latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)

        return ({"samples":latent}, width, height,)

class DisplayAny:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "input": (("*",{})),
                "mode": (["raw value", "tensor shape"],),
            },
        }

    @classmethod
    def VALIDATE_INPUTS(s, input_types):
        return True

    RETURN_TYPES = ("STRING",)
    FUNCTION = "execute"
    OUTPUT_NODE = True

    CATEGORY = "essentials/utilities"

    def execute(self, input, mode):
        if mode == "tensor shape":
            text = []
            def tensorShape(tensor):
                if isinstance(tensor, dict):
                    for k in tensor:
                        tensorShape(tensor[k])
                elif isinstance(tensor, list):
                    for i in range(len(tensor)):
                        tensorShape(tensor[i])
                elif hasattr(tensor, 'shape'):
                    text.append(list(tensor.shape))

            tensorShape(input)
            input = text

        text = str(input)

        return {"ui": {"text": text}, "result": (text,)}

MISC_CLASS_MAPPINGS = {
    "BatchCount+": BatchCount,
    "ConsoleDebug+": ConsoleDebug,
    "DebugTensorShape+": DebugTensorShape,
    "DisplayAny": DisplayAny,
    "ModelCompile+": ModelCompile,
    "RemoveLatentMask+": RemoveLatentMask,
    "SDXLEmptyLatentSizePicker+": SDXLEmptyLatentSizePicker,
    "SimpleComparison+": SimpleComparison,
    "SimpleCondition+": SimpleCondition,
    "SimpleMath+": SimpleMath,
    "SimpleMathDual+": SimpleMathDual,
    "SimpleMathCondition+": SimpleMathCondition,
    "SimpleMathBoolean+": SimpleMathBoolean,
    "SimpleMathFloat+": SimpleMathFloat,
    "SimpleMathInt+": SimpleMathInt,
    "SimpleMathPercent+": SimpleMathPercent,
    "SimpleMathSlider+": SimpleMathSlider,
    "SimpleMathSliderLowRes+": SimpleMathSliderLowRes,
}

MISC_NAME_MAPPINGS = {
    "BatchCount+": "๐Ÿ”ง Batch Count",
    "ConsoleDebug+": "๐Ÿ”ง Console Debug",
    "DebugTensorShape+": "๐Ÿ”ง Debug Tensor Shape",
    "DisplayAny": "๐Ÿ”ง Display Any",
    "ModelCompile+": "๐Ÿ”ง Model Compile",
    "RemoveLatentMask+": "๐Ÿ”ง Remove Latent Mask",
    "SDXLEmptyLatentSizePicker+": "๐Ÿ”ง Empty Latent Size Picker",
    "SimpleComparison+": "๐Ÿ”ง Simple Comparison",
    "SimpleCondition+": "๐Ÿ”ง Simple Condition",
    "SimpleMath+": "๐Ÿ”ง Simple Math",
    "SimpleMathDual+": "๐Ÿ”ง Simple Math Dual",
    "SimpleMathCondition+": "๐Ÿ”ง Simple Math Condition",
    "SimpleMathBoolean+": "๐Ÿ”ง Simple Math Boolean",
    "SimpleMathFloat+": "๐Ÿ”ง Simple Math Float",
    "SimpleMathInt+": "๐Ÿ”ง Simple Math Int",
    "SimpleMathPercent+": "๐Ÿ”ง Simple Math Percent",
    "SimpleMathSlider+": "๐Ÿ”ง Simple Math Slider",
    "SimpleMathSliderLowRes+": "๐Ÿ”ง Simple Math Slider low-res",
}