Spaces:
Sleeping
Sleeping
import os | |
import random | |
import sys | |
from typing import Sequence, Mapping, Any, Union | |
import torch | |
import gradio as gr | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import spaces | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models") | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models") | |
hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision") | |
hf_hub_download(repo_id="Kijai/DepthAnythingV2-safetensors", filename="depth_anything_v2_vitl_fp32.safetensors", local_dir="models/depthanything") | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae/FLUX1") | |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders") | |
t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5") | |
print(t5_path) | |
# Import all the necessary functions from the original script | |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
try: | |
return obj[index] | |
except KeyError: | |
return obj["result"][index] | |
# Add all the necessary setup functions from the original script | |
def find_path(name: str, path: str = None) -> str: | |
if path is None: | |
path = os.getcwd() | |
if name in os.listdir(path): | |
path_name = os.path.join(path, name) | |
print(f"{name} found: {path_name}") | |
return path_name | |
parent_directory = os.path.dirname(path) | |
if parent_directory == path: | |
return None | |
return find_path(name, parent_directory) | |
def add_comfyui_directory_to_sys_path() -> None: | |
comfyui_path = find_path("ComfyUI") | |
if comfyui_path is not None and os.path.isdir(comfyui_path): | |
sys.path.append(comfyui_path) | |
print(f"'{comfyui_path}' added to sys.path") | |
def add_extra_model_paths() -> None: | |
try: | |
from main import load_extra_path_config | |
except ImportError: | |
from utils.extra_config import load_extra_path_config | |
extra_model_paths = find_path("extra_model_paths.yaml") | |
if extra_model_paths is not None: | |
load_extra_path_config(extra_model_paths) | |
else: | |
print("Could not find the extra_model_paths config file.") | |
# Initialize paths | |
add_comfyui_directory_to_sys_path() | |
add_extra_model_paths() | |
def import_custom_nodes() -> None: | |
import asyncio | |
import execution | |
from nodes import init_extra_nodes | |
import server | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
init_extra_nodes() | |
# Import all necessary nodes | |
from nodes import ( | |
StyleModelLoader, | |
VAEEncode, | |
NODE_CLASS_MAPPINGS, | |
LoadImage, | |
CLIPVisionLoader, | |
SaveImage, | |
VAELoader, | |
CLIPVisionEncode, | |
DualCLIPLoader, | |
EmptyLatentImage, | |
VAEDecode, | |
UNETLoader, | |
CLIPTextEncode, | |
) | |
# Initialize all constant nodes and models in global context | |
import_custom_nodes() | |
# Global variables for preloaded models and constants | |
#with torch.inference_mode(): | |
# Initialize constants | |
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() | |
CONST_1024 = intconstant.get_value(value=1024) | |
# Load CLIP | |
dualcliploader = DualCLIPLoader() | |
CLIP_MODEL = dualcliploader.load_clip( | |
clip_name1="t5/t5xxl_fp16.safetensors", | |
clip_name2="clip_l.safetensors", | |
type="flux", | |
) | |
# Load VAE | |
vaeloader = VAELoader() | |
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors") | |
# Load UNET | |
unetloader = UNETLoader() | |
UNET_MODEL = unetloader.load_unet( | |
unet_name="flux1-depth-dev.safetensors", weight_dtype="default" | |
) | |
# Load CLIP Vision | |
clipvisionloader = CLIPVisionLoader() | |
CLIP_VISION_MODEL = clipvisionloader.load_clip( | |
clip_name="sigclip_vision_patch14_384.safetensors" | |
) | |
# Load Style Model | |
stylemodelloader = StyleModelLoader() | |
STYLE_MODEL = stylemodelloader.load_style_model( | |
style_model_name="flux1-redux-dev.safetensors" | |
) | |
# Initialize samplers | |
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler") | |
# Initialize depth model | |
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]() | |
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]() | |
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel( | |
model="depth_anything_v2_vitl_fp32.safetensors" | |
) | |
cliptextencode = CLIPTextEncode() | |
loadimage = LoadImage() | |
vaeencode = VAEEncode() | |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]() | |
clipvisionencode = CLIPVisionEncode() | |
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]() | |
emptylatentimage = EmptyLatentImage() | |
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() | |
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
vaedecode = VAEDecode() | |
cr_text = NODE_CLASS_MAPPINGS["CR Text"]() | |
saveimage = SaveImage() | |
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]() | |
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]() | |
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() | |
def generate_image(prompt, structure_image, style_image, depth_strength=15, style_strength=0.5, progress=gr.Progress(track_tqdm=True)) -> str: | |
"""Main generation function that processes inputs and returns the path to the generated image.""" | |
with torch.inference_mode(): | |
# Set up CLIP | |
clip_switch = cr_clip_input_switch.switch( | |
Input=1, | |
clip1=get_value_at_index(CLIP_MODEL, 0), | |
clip2=get_value_at_index(CLIP_MODEL, 0), | |
) | |
# Encode text | |
text_encoded = cliptextencode.encode( | |
text=prompt, | |
clip=get_value_at_index(clip_switch, 0), | |
) | |
empty_text = cliptextencode.encode( | |
text="", | |
clip=get_value_at_index(clip_switch, 0), | |
) | |
# Process structure image | |
structure_img = loadimage.load_image(image=structure_image) | |
# Resize image | |
resized_img = imageresize.execute( | |
width=get_value_at_index(CONST_1024, 0), | |
height=get_value_at_index(CONST_1024, 0), | |
interpolation="bicubic", | |
method="keep proportion", | |
condition="always", | |
multiple_of=16, | |
image=get_value_at_index(structure_img, 0), | |
) | |
# Get image size | |
size_info = getimagesizeandcount.getsize( | |
image=get_value_at_index(resized_img, 0) | |
) | |
# Encode VAE | |
vae_encoded = vaeencode.encode( | |
pixels=get_value_at_index(size_info, 0), | |
vae=get_value_at_index(VAE_MODEL, 0), | |
) | |
# Process depth | |
depth_processed = depthanything_v2.process( | |
da_model=get_value_at_index(DEPTH_MODEL, 0), | |
images=get_value_at_index(size_info, 0), | |
) | |
# Apply Flux guidance | |
flux_guided = fluxguidance.append( | |
guidance=depth_strength, | |
conditioning=get_value_at_index(text_encoded, 0), | |
) | |
# Process style image | |
style_img = loadimage.load_image(image=style_image) | |
# Encode style with CLIP Vision | |
style_encoded = clipvisionencode.encode( | |
crop="center", | |
clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0), | |
image=get_value_at_index(style_img, 0), | |
) | |
# Set up conditioning | |
conditioning = instructpixtopixconditioning.encode( | |
positive=get_value_at_index(flux_guided, 0), | |
negative=get_value_at_index(empty_text, 0), | |
vae=get_value_at_index(VAE_MODEL, 0), | |
pixels=get_value_at_index(depth_processed, 0), | |
) | |
# Apply style | |
style_applied = stylemodelapplyadvanced.apply_stylemodel( | |
strength=style_strength, | |
conditioning=get_value_at_index(conditioning, 0), | |
style_model=get_value_at_index(STYLE_MODEL, 0), | |
clip_vision_output=get_value_at_index(style_encoded, 0), | |
) | |
# Set up empty latent | |
empty_latent = emptylatentimage.generate( | |
width=get_value_at_index(resized_img, 1), | |
height=get_value_at_index(resized_img, 2), | |
batch_size=1, | |
) | |
# Set up guidance | |
guided = basicguider.get_guider( | |
model=get_value_at_index(UNET_MODEL, 0), | |
conditioning=get_value_at_index(style_applied, 0), | |
) | |
# Set up scheduler | |
schedule = basicscheduler.get_sigmas( | |
scheduler="simple", | |
steps=28, | |
denoise=1, | |
model=get_value_at_index(UNET_MODEL, 0), | |
) | |
# Generate random noise | |
noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64)) | |
# Sample | |
sampled = samplercustomadvanced.sample( | |
noise=get_value_at_index(noise, 0), | |
guider=get_value_at_index(guided, 0), | |
sampler=get_value_at_index(SAMPLER, 0), | |
sigmas=get_value_at_index(schedule, 0), | |
latent_image=get_value_at_index(empty_latent, 0), | |
) | |
# Decode VAE | |
decoded = vaedecode.decode( | |
samples=get_value_at_index(sampled, 0), | |
vae=get_value_at_index(VAE_MODEL, 0), | |
) | |
# Save image | |
prefix = cr_text.text_multiline(text="Flux_BFL_Depth_Redux") | |
saved = saveimage.save_images( | |
filename_prefix=get_value_at_index(prefix, 0), | |
images=get_value_at_index(decoded, 0), | |
) | |
saved_path = f"output/{saved['ui']['images'][0]['filename']}" | |
print(saved_path) | |
return saved_path | |
# Create Gradio interface | |
examples = [ | |
["", "mona.png", "receita-tacos.webp"], | |
["a woman looking at a house catching fire on the background", "disaster_girl.png", "abaporu.jpg"], | |
["istanbul aerial, dramatic photography", "natasha.png", "istambul.jpg"], | |
] | |
with gr.Blocks() as app: | |
gr.Markdown("# FLUX Style Shaping") | |
gr.Markdown("## Flux[dev] Redux + Flux[dev] Depth ComfyUI workflow by [CitizenPlain](https://x.com/CitizenPlain) running directly on Gradio. [workflow](https://gist.github.com/nathanshipley/7a9ac1901adde76feebe58d558026f68) - [how to convert your comfy workflow to gradio (soon)](#)") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
with gr.Row(): | |
with gr.Group(): | |
structure_image = gr.Image(label="Structure Image", type="filepath") | |
depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength") | |
with gr.Group(): | |
style_image = gr.Image(label="Style Image", type="filepath") | |
style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength") | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt, structure_image, style_image], | |
outputs=[output_image], | |
fn=generate_image, | |
cache_examples="lazy" | |
) | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength], | |
outputs=[output_image] | |
) | |
if __name__ == "__main__": | |
app.launch(share=True) |