Spaces:
Runtime error
Runtime error
#---------------------------------------------------------------------------------------------------------------------# | |
# CR Animation Nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/CR-Animation-Nodes | |
# for ComfyUI https://github.com/comfyanonymous/ComfyUI | |
#---------------------------------------------------------------------------------------------------------------------# | |
from PIL import Image, ImageSequence | |
import comfy.sd | |
import re | |
import torch | |
import numpy as np | |
import os | |
import sys | |
import folder_paths | |
import math | |
import json | |
import csv | |
from typing import List | |
from PIL.PngImagePlugin import PngInfo | |
from nodes import SaveImage | |
import glob | |
from ..categories import icons | |
#MAX_RESOLUTION=8192 | |
ALLOWED_EXT = ('.jpeg', '.jpg', '.png', '.tiff', '.gif', '.bmp', '.webp') | |
def resolve_pattern(pattern): | |
folder_path, file_pattern = os.path.split(pattern) | |
frame_pattern = re.sub(r"#+", "*", file_pattern) | |
matching_files = glob.glob(os.path.join(folder_path, frame_pattern)) | |
#print(f"[Debug] Found {len(matching_files)} matching files for frame pattern {frame_pattern}") | |
return matching_files | |
def get_files(image_path, sort_by="Index", pattern=None): | |
if pattern is not None: | |
matching_files = resolve_pattern(os.path.join(image_path, pattern)) | |
else: | |
matching_files = os.listdir(image_path) | |
if sort_by == "Index": | |
sorted_files = sorted(matching_files, key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ())) | |
elif sort_by == "Alphabetic": | |
sorted_files = sorted(matching_files, key=lambda s: (re.split(r'(\d+)', s), s)) | |
else: | |
raise ValueError("Invalid sort_by value. Use 'Index' or 'Alphabetic'.") | |
return sorted_files | |
#---------------------------------------------------------------------------------------------------------------------# | |
# NODES | |
#---------------------------------------------------------------------------------------------------------------------# | |
class CR_LoadAnimationFrames: | |
#input_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))), 'input') | |
input_dir = folder_paths.input_directory | |
#print(f"CR_LoadAnimationFrames: input directory {input_dir}") | |
def INPUT_TYPES(s): | |
#if not os.path.exists(s.input_dir): | |
#os.makedirs(s.input_dir) | |
image_folder = [name for name in os.listdir(s.input_dir) if os.path.isdir(os.path.join(s.input_dir,name)) and len(os.listdir(os.path.join(s.input_dir,name))) != 0] | |
return {"required": | |
{"image_sequence_folder": (sorted(image_folder), ), | |
"start_index": ("INT", {"default": 1, "min": 1, "max": 10000}), | |
"max_frames": ("INT", {"default": 1, "min": 1, "max": 10000}) | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "STRING", ) | |
RETURN_NAMES = ("IMAGE", "show_help", ) | |
FUNCTION = "load_image_sequence" | |
CATEGORY = icons.get("Comfyroll/Animation/IO") | |
def load_image_sequence(self, image_sequence_folder, start_index, max_frames): | |
image_path = os.path.join(self.input_dir, image_sequence_folder) | |
file_list = sorted(os.listdir(image_path), key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ())) | |
sample_frames = [] | |
sample_frames_mask = [] | |
sample_index = list(range(start_index-1, len(file_list), 1))[:max_frames] | |
for num in sample_index: | |
i = Image.open(os.path.join(image_path, file_list[num])) | |
image = i.convert("RGB") | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
image = image.squeeze() | |
sample_frames.append(image) | |
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/IO-Nodes#cr-load-animation-frames" | |
return (torch.stack(sample_frames), show_help, ) | |
#---------------------------------------------------------------------------------------------------------------------# | |
class CR_LoadFlowFrames: | |
# based on Load Image Sequence in vid2vid and mtb | |
def INPUT_TYPES(s): | |
sort_methods = ["Index", "Alphabetic"] | |
#sort_methods = ["Date modified", "Alphabetic", "Index"] | |
input_dir = folder_paths.input_directory | |
input_folders = [name for name in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir,name)) and len(os.listdir(os.path.join(input_dir,name))) != 0] | |
return {"required": | |
{"input_folder": (sorted(input_folders), ), | |
"sort_by": (sort_methods, ), | |
"current_frame": ("INT", {"default": 0, "min": 0, "max": 10000, "forceInput": True}), | |
"skip_start_frames": ("INT", {"default": 0, "min": 0, "max": 10000}), | |
}, | |
"optional": | |
{"input_path": ("STRING", {"default": '', "multiline": False}), | |
"file_pattern": ("STRING", {"default": '*.png', "multiline": False}), | |
} | |
} | |
CATEGORY = icons.get("Comfyroll/Animation/IO") | |
RETURN_TYPES = ("IMAGE", "IMAGE", "INT", "STRING", ) | |
RETURN_NAMES = ("current_image", "previous_image", "current_frame", "show_help", ) | |
FUNCTION = "load_images" | |
def load_images(self, file_pattern, skip_start_frames, input_folder, sort_by, current_frame, input_path=''): | |
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/IO-Nodes#cr-load-flow-frames" | |
input_dir = folder_paths.input_directory | |
current_frame = current_frame + skip_start_frames | |
print(f"[Info] CR Load Flow Frames: current_frame {current_frame}") | |
if input_path != '': | |
if not os.path.exists(input_path): | |
print(f"[Warning] CR Load Flow Frames: The input_path `{input_path}` does not exist") | |
return ("", ) | |
image_path = os.path.join('', input_path) | |
else: | |
image_path = os.path.join(input_dir, input_folder) | |
print(f"[Info] CR Load Flow Frames: ComfyUI Input directory is `{image_path}`") | |
file_list = get_files(image_path, sort_by, file_pattern) | |
if os.path.exists(image_path + '.DS_Store'): | |
file_list.remove('.DS_Store') # For Mac users | |
if len(file_list) == 0: | |
print(f"[Warning] CR Load Flow Frames: No matching files found for loading") | |
return () | |
remaining_files = len(file_list) - current_frame | |
print(f"[Info] CR Load Flow Frames: {remaining_files} input files remaining for processing") | |
img = Image.open(os.path.join(image_path, file_list[current_frame])) | |
cur_image = img.convert("RGB") | |
cur_image = np.array(cur_image).astype(np.float32) / 255.0 | |
cur_image = torch.from_numpy(cur_image)[None,] | |
print(f"[Debug] CR Load Flow Frames: Current image {file_list[current_frame]}") | |
# Load first frame as previous frame if no frames skipped | |
if current_frame == 0 and skip_start_frames == 0: | |
img = Image.open(os.path.join(image_path, file_list[current_frame])) | |
pre_image = img.convert("RGB") | |
pre_image = np.array(pre_image).astype(np.float32) / 255.0 | |
pre_image = torch.from_numpy(pre_image)[None,] | |
print(f"[Debug] CR Load Flow Frames: Previous image {file_list[current_frame]}") | |
else: | |
img = Image.open(os.path.join(image_path, file_list[current_frame - 1])) | |
pre_image = img.convert("RGB") | |
pre_image = np.array(pre_image).astype(np.float32) / 255.0 | |
pre_image = torch.from_numpy(pre_image)[None,] | |
print(f"[Debug] CR Load Flow Frames: Previous image {file_list[current_frame - 1]}") | |
return (cur_image, pre_image, current_frame, show_help, ) | |
#---------------------------------------------------------------------------------------------------------------------# | |
class CR_OutputFlowFrames: | |
# based on SaveImageSequence by mtb | |
def __init__(self): | |
self.type = "output" | |
def INPUT_TYPES(cls): | |
output_dir = folder_paths.output_directory | |
output_folders = [name for name in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir,name)) and len(os.listdir(os.path.join(output_dir,name))) != 0] | |
return { | |
"required": {"output_folder": (sorted(output_folders), ), | |
"current_image": ("IMAGE", ), | |
"filename_prefix": ("STRING", {"default": "CR"}), | |
"current_frame": ("INT", {"default": 0, "min": 0, "max": 9999999, "forceInput": True}), | |
}, | |
"optional": {"interpolated_img": ("IMAGE", ), | |
"output_path": ("STRING", {"default": '', "multiline": False}), | |
} | |
} | |
RETURN_TYPES = () | |
FUNCTION = "save_images" | |
OUTPUT_NODE = True | |
CATEGORY = icons.get("Comfyroll/Animation/IO") | |
def save_images(self, output_folder, current_image, current_frame, output_path='', filename_prefix="CR", interpolated_img=None): | |
output_dir = folder_paths.get_output_directory() | |
out_folder = os.path.join(output_dir, output_folder) | |
if output_path != '': | |
if not os.path.exists(output_path): | |
print(f"[Warning] CR Output Flow Frames: The input_path `{output_path}` does not exist") | |
return ("",) | |
out_path = output_path # os.path.join("", output_path) | |
else: | |
out_path = os.path.join(output_dir, out_folder) | |
print(f"[Info] CR Output Flow Frames: Output path is `{out_path}`") | |
if interpolated_img is not None: | |
output_image0 = current_image[0].cpu().numpy() | |
output_image1 = interpolated_img[0].cpu().numpy() | |
img0 = Image.fromarray(np.clip(output_image0 * 255.0, 0, 255).astype(np.uint8)) | |
img1 = Image.fromarray(np.clip(output_image1 * 255.0, 0, 255).astype(np.uint8)) | |
output_filename0 = f"{filename_prefix}_{current_frame:05}_0.png" | |
output_filename1 = f"{filename_prefix}_{current_frame:05}_1.png" | |
print(f"[Warning] CR Output Flow Frames: Saved {filename_prefix}_{current_frame:05}_0.png") | |
print(f"[Warning] CR Output Flow Frames: Saved {filename_prefix}_{current_frame:05}_1.png") | |
resolved_image_path0 = out_path + "/" + output_filename0 | |
resolved_image_path1 = out_path + "/" + output_filename1 | |
img0.save(resolved_image_path0, pnginfo="", compress_level=4) | |
img1.save(resolved_image_path1, pnginfo="", compress_level=4) | |
else: | |
output_image0 = current_image[0].cpu().numpy() | |
img0 = Image.fromarray(np.clip(output_image0 * 255.0, 0, 255).astype(np.uint8)) | |
output_filename0 = f"{filename_prefix}_{current_frame:05}.png" | |
resolved_image_path0 = out_path + "/" + output_filename0 | |
img0.save(resolved_image_path0, pnginfo="", compress_level=4) | |
print(f"[Info] CR Output Flow Frames: Saved {filename_prefix}_{current_frame:05}.png") | |
result = {"ui": {"images": [{"filename": output_filename0,"subfolder": out_path,"type": self.type,}]}} | |
return result | |
#---------------------------------------------------------------------------------------------------------------------# | |
# MAPPINGS | |
#---------------------------------------------------------------------------------------------------------------------# | |
# For reference only, actual mappings are in __init__.py | |
# 3 nodes released | |
''' | |
NODE_CLASS_MAPPINGS = { | |
# IO | |
"CR Load Animation Frames":CR_LoadAnimationFrames, | |
"CR Load Flow Frames":CR_LoadFlowFrames, | |
"CR Output Flow Frames":CR_OutputFlowFrames, | |
} | |
''' | |