Spaces:
Runtime error
Runtime error
from nodes import SaveImage | |
import torch | |
import torchvision.transforms.v2 as T | |
import random | |
import folder_paths | |
import comfy.utils | |
from .image import ImageExpandBatch | |
from .utils import AnyType | |
import numpy as np | |
import scipy | |
from PIL import Image | |
from nodes import MAX_RESOLUTION | |
import math | |
any = AnyType("*") | |
class MaskBlur: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"mask": ("MASK",), | |
"amount": ("INT", { "default": 6, "min": 0, "max": 256, "step": 1, }), | |
"device": (["auto", "cpu", "gpu"],), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, mask, amount, device): | |
if amount == 0: | |
return (mask,) | |
if "gpu" == device: | |
mask = mask.to(comfy.model_management.get_torch_device()) | |
elif "cpu" == device: | |
mask = mask.to('cpu') | |
if amount % 2 == 0: | |
amount+= 1 | |
if mask.dim() == 2: | |
mask = mask.unsqueeze(0) | |
mask = T.functional.gaussian_blur(mask.unsqueeze(1), amount).squeeze(1) | |
if "gpu" == device or "cpu" == device: | |
mask = mask.to(comfy.model_management.intermediate_device()) | |
return(mask,) | |
class MaskFlip: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"mask": ("MASK",), | |
"axis": (["x", "y", "xy"],), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, mask, axis): | |
if mask.dim() == 2: | |
mask = mask.unsqueeze(0) | |
dim = () | |
if "y" in axis: | |
dim += (1,) | |
if "x" in axis: | |
dim += (2,) | |
mask = torch.flip(mask, dims=dim) | |
return(mask,) | |
class MaskPreview(SaveImage): | |
def __init__(self): | |
self.output_dir = folder_paths.get_temp_directory() | |
self.type = "temp" | |
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) | |
self.compress_level = 4 | |
def INPUT_TYPES(s): | |
return { | |
"required": {"mask": ("MASK",), }, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
} | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): | |
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) | |
return self.save_images(preview, filename_prefix, prompt, extra_pnginfo) | |
class MaskBatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"mask1": ("MASK",), | |
"mask2": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask batch" | |
def execute(self, mask1, mask2): | |
if mask1.shape[1:] != mask2.shape[1:]: | |
mask2 = comfy.utils.common_upscale(mask2.unsqueeze(1).expand(-1,3,-1,-1), mask1.shape[2], mask1.shape[1], upscale_method='bicubic', crop='center')[:,0,:,:] | |
return (torch.cat((mask1, mask2), dim=0),) | |
class MaskExpandBatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"mask": ("MASK",), | |
"size": ("INT", { "default": 16, "min": 1, "step": 1, }), | |
"method": (["expand", "repeat all", "repeat first", "repeat last"],) | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask batch" | |
def execute(self, mask, size, method): | |
return (ImageExpandBatch().execute(mask.unsqueeze(1).expand(-1,3,-1,-1), size, method)[0][:,0,:,:],) | |
class MaskBoundingBox: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"mask": ("MASK",), | |
"padding": ("INT", { "default": 0, "min": 0, "max": 4096, "step": 1, }), | |
"blur": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }), | |
}, | |
"optional": { | |
"image_optional": ("IMAGE",), | |
} | |
} | |
RETURN_TYPES = ("MASK", "IMAGE", "INT", "INT", "INT", "INT") | |
RETURN_NAMES = ("MASK", "IMAGE", "x", "y", "width", "height") | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, mask, padding, blur, image_optional=None): | |
if mask.dim() == 2: | |
mask = mask.unsqueeze(0) | |
if image_optional is None: | |
image_optional = mask.unsqueeze(3).repeat(1, 1, 1, 3) | |
# resize the image if it's not the same size as the mask | |
if image_optional.shape[1:] != mask.shape[1:]: | |
image_optional = comfy.utils.common_upscale(image_optional.permute([0,3,1,2]), mask.shape[2], mask.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1]) | |
# match batch size | |
if image_optional.shape[0] < mask.shape[0]: | |
image_optional = torch.cat((image_optional, image_optional[-1].unsqueeze(0).repeat(mask.shape[0]-image_optional.shape[0], 1, 1, 1)), dim=0) | |
elif image_optional.shape[0] > mask.shape[0]: | |
image_optional = image_optional[:mask.shape[0]] | |
# blur the mask | |
if blur > 0: | |
if blur % 2 == 0: | |
blur += 1 | |
mask = T.functional.gaussian_blur(mask.unsqueeze(1), blur).squeeze(1) | |
_, y, x = torch.where(mask) | |
x1 = max(0, x.min().item() - padding) | |
x2 = min(mask.shape[2], x.max().item() + 1 + padding) | |
y1 = max(0, y.min().item() - padding) | |
y2 = min(mask.shape[1], y.max().item() + 1 + padding) | |
# crop the mask | |
mask = mask[:, y1:y2, x1:x2] | |
image_optional = image_optional[:, y1:y2, x1:x2, :] | |
return (mask, image_optional, x1, y1, x2 - x1, y2 - y1) | |
class MaskFromColor: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE", ), | |
"red": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }), | |
"green": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }), | |
"blue": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }), | |
"threshold": ("INT", { "default": 0, "min": 0, "max": 127, "step": 1, }), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, image, red, green, blue, threshold): | |
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int) | |
color = torch.tensor([red, green, blue]) | |
lower_bound = (color - threshold).clamp(min=0) | |
upper_bound = (color + threshold).clamp(max=255) | |
lower_bound = lower_bound.view(1, 1, 1, 3) | |
upper_bound = upper_bound.view(1, 1, 1, 3) | |
mask = (temp >= lower_bound) & (temp <= upper_bound) | |
mask = mask.all(dim=-1) | |
mask = mask.float() | |
return (mask, ) | |
class MaskFromSegmentation: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE", ), | |
"segments": ("INT", { "default": 6, "min": 1, "max": 16, "step": 1, }), | |
"remove_isolated_pixels": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1, }), | |
"remove_small_masks": ("FLOAT", { "default": 0.0, "min": 0., "max": 1., "step": 0.01, }), | |
"fill_holes": ("BOOLEAN", { "default": False }), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, image, segments, remove_isolated_pixels, fill_holes, remove_small_masks): | |
im = image[0] # we only work on the first image in the batch | |
im = Image.fromarray((im * 255).to(torch.uint8).cpu().numpy(), mode="RGB") | |
im = im.quantize(palette=im.quantize(colors=segments), dither=Image.Dither.NONE) | |
im = torch.tensor(np.array(im.convert("RGB"))).float() / 255.0 | |
colors = im.reshape(-1, im.shape[-1]) | |
colors = torch.unique(colors, dim=0) | |
masks = [] | |
for color in colors: | |
mask = (im == color).all(dim=-1).float() | |
# remove isolated pixels | |
if remove_isolated_pixels > 0: | |
mask = torch.from_numpy(scipy.ndimage.binary_opening(mask.cpu().numpy(), structure=np.ones((remove_isolated_pixels, remove_isolated_pixels)))) | |
# fill holes | |
if fill_holes: | |
mask = torch.from_numpy(scipy.ndimage.binary_fill_holes(mask.cpu().numpy())) | |
# if the mask is too small, it's probably noise | |
if mask.sum() / (mask.shape[0]*mask.shape[1]) > remove_small_masks: | |
masks.append(mask) | |
if masks == []: | |
masks.append(torch.zeros_like(im)[:,:,0]) # return an empty mask if no masks were found, prevents errors | |
mask = torch.stack(masks, dim=0).float() | |
return (mask, ) | |
class MaskFix: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"mask": ("MASK",), | |
"erode_dilate": ("INT", { "default": 0, "min": -256, "max": 256, "step": 1, }), | |
"fill_holes": ("INT", { "default": 0, "min": 0, "max": 128, "step": 1, }), | |
"remove_isolated_pixels": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1, }), | |
"smooth": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }), | |
"blur": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, mask, erode_dilate, smooth, remove_isolated_pixels, blur, fill_holes): | |
masks = [] | |
for m in mask: | |
# erode and dilate | |
if erode_dilate != 0: | |
if erode_dilate < 0: | |
m = torch.from_numpy(scipy.ndimage.grey_erosion(m.cpu().numpy(), size=(-erode_dilate, -erode_dilate))) | |
else: | |
m = torch.from_numpy(scipy.ndimage.grey_dilation(m.cpu().numpy(), size=(erode_dilate, erode_dilate))) | |
# fill holes | |
if fill_holes > 0: | |
#m = torch.from_numpy(scipy.ndimage.binary_fill_holes(m.cpu().numpy(), structure=np.ones((fill_holes,fill_holes)))).float() | |
m = torch.from_numpy(scipy.ndimage.grey_closing(m.cpu().numpy(), size=(fill_holes, fill_holes))) | |
# remove isolated pixels | |
if remove_isolated_pixels > 0: | |
m = torch.from_numpy(scipy.ndimage.grey_opening(m.cpu().numpy(), size=(remove_isolated_pixels, remove_isolated_pixels))) | |
# smooth the mask | |
if smooth > 0: | |
if smooth % 2 == 0: | |
smooth += 1 | |
m = T.functional.gaussian_blur((m > 0.5).unsqueeze(0), smooth).squeeze(0) | |
# blur the mask | |
if blur > 0: | |
if blur % 2 == 0: | |
blur += 1 | |
m = T.functional.gaussian_blur(m.float().unsqueeze(0), blur).squeeze(0) | |
masks.append(m.float()) | |
masks = torch.stack(masks, dim=0).float() | |
return (masks, ) | |
class MaskSmooth: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"mask": ("MASK",), | |
"amount": ("INT", { "default": 0, "min": 0, "max": 127, "step": 1, }), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, mask, amount): | |
if amount == 0: | |
return (mask,) | |
if amount % 2 == 0: | |
amount += 1 | |
mask = mask > 0.5 | |
mask = T.functional.gaussian_blur(mask.unsqueeze(1), amount).squeeze(1).float() | |
return (mask,) | |
class MaskFromBatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"mask": ("MASK", ), | |
"start": ("INT", { "default": 0, "min": 0, "step": 1, }), | |
"length": ("INT", { "default": 1, "min": 1, "step": 1, }), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask batch" | |
def execute(self, mask, start, length): | |
if length > mask.shape[0]: | |
length = mask.shape[0] | |
start = min(start, mask.shape[0]-1) | |
length = min(mask.shape[0]-start, length) | |
return (mask[start:start + length], ) | |
class MaskFromList: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"width": ("INT", { "default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
"height": ("INT", { "default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), | |
}, "optional": { | |
"values": (any, { "default": 0.0, "min": 0.0, "max": 1.0, }), | |
"str_values": ("STRING", { "default": "", "multiline": True, "placeholder": "0.0, 0.5, 1.0",}), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, width, height, values=None, str_values=""): | |
out = [] | |
if values is not None: | |
if not isinstance(values, list): | |
out = [values] | |
else: | |
out.extend([float(v) for v in values]) | |
if str_values != "": | |
str_values = [float(v) for v in str_values.split(",")] | |
out.extend(str_values) | |
if out == []: | |
raise ValueError("No values provided") | |
out = torch.tensor(out).float().clamp(0.0, 1.0) | |
out = out.view(-1, 1, 1).expand(-1, height, width) | |
values = None | |
str_values = "" | |
return (out, ) | |
class MaskFromRGBCMYBW: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE", ), | |
"threshold_r": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }), | |
"threshold_g": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }), | |
"threshold_b": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }), | |
} | |
} | |
RETURN_TYPES = ("MASK","MASK","MASK","MASK","MASK","MASK","MASK","MASK",) | |
RETURN_NAMES = ("red","green","blue","cyan","magenta","yellow","black","white",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def execute(self, image, threshold_r, threshold_g, threshold_b): | |
red = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] < threshold_b)).float() | |
green = ((image[..., 0] < threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] < threshold_b)).float() | |
blue = ((image[..., 0] < threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] >= 1-threshold_b)).float() | |
cyan = ((image[..., 0] < threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] >= 1-threshold_b)).float() | |
magenta = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] > 1-threshold_b)).float() | |
yellow = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] < threshold_b)).float() | |
black = ((image[..., 0] <= threshold_r) & (image[..., 1] <= threshold_g) & (image[..., 2] <= threshold_b)).float() | |
white = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] >= 1-threshold_b)).float() | |
return (red, green, blue, cyan, magenta, yellow, black, white,) | |
class TransitionMask: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"width": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }), | |
"height": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }), | |
"frames": ("INT", { "default": 16, "min": 1, "max": 9999, "step": 1, }), | |
"start_frame": ("INT", { "default": 0, "min": 0, "step": 1, }), | |
"end_frame": ("INT", { "default": 9999, "min": 0, "step": 1, }), | |
"transition_type": (["horizontal slide", "vertical slide", "horizontal bar", "vertical bar", "center box", "horizontal door", "vertical door", "circle", "fade"],), | |
"timing_function": (["linear", "in", "out", "in-out"],) | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/mask" | |
def linear(self, i, t): | |
return i/t | |
def ease_in(self, i, t): | |
return pow(i/t, 2) | |
def ease_out(self, i, t): | |
return 1 - pow(1 - i/t, 2) | |
def ease_in_out(self, i, t): | |
if i < t/2: | |
return pow(i/(t/2), 2) / 2 | |
else: | |
return 1 - pow(1 - (i - t/2)/(t/2), 2) / 2 | |
def execute(self, width, height, frames, start_frame, end_frame, transition_type, timing_function): | |
if timing_function == 'in': | |
timing_function = self.ease_in | |
elif timing_function == 'out': | |
timing_function = self.ease_out | |
elif timing_function == 'in-out': | |
timing_function = self.ease_in_out | |
else: | |
timing_function = self.linear | |
out = [] | |
end_frame = min(frames, end_frame) | |
transition = end_frame - start_frame | |
if start_frame > 0: | |
out = out + [torch.full((height, width), 0.0, dtype=torch.float32, device="cpu")] * start_frame | |
for i in range(transition): | |
frame = torch.full((height, width), 0.0, dtype=torch.float32, device="cpu") | |
progress = timing_function(i, transition-1) | |
if "horizontal slide" in transition_type: | |
pos = round(width*progress) | |
frame[:, :pos] = 1.0 | |
elif "vertical slide" in transition_type: | |
pos = round(height*progress) | |
frame[:pos, :] = 1.0 | |
elif "box" in transition_type: | |
box_w = round(width*progress) | |
box_h = round(height*progress) | |
x1 = (width - box_w) // 2 | |
y1 = (height - box_h) // 2 | |
x2 = x1 + box_w | |
y2 = y1 + box_h | |
frame[y1:y2, x1:x2] = 1.0 | |
elif "circle" in transition_type: | |
radius = math.ceil(math.sqrt(pow(width,2)+pow(height,2))*progress/2) | |
c_x = width // 2 | |
c_y = height // 2 | |
# is this real life? Am I hallucinating? | |
x = torch.arange(0, width, dtype=torch.float32, device="cpu") | |
y = torch.arange(0, height, dtype=torch.float32, device="cpu") | |
y, x = torch.meshgrid((y, x), indexing="ij") | |
circle = ((x - c_x) ** 2 + (y - c_y) ** 2) <= (radius ** 2) | |
frame[circle] = 1.0 | |
elif "horizontal bar" in transition_type: | |
bar = round(height*progress) | |
y1 = (height - bar) // 2 | |
y2 = y1 + bar | |
frame[y1:y2, :] = 1.0 | |
elif "vertical bar" in transition_type: | |
bar = round(width*progress) | |
x1 = (width - bar) // 2 | |
x2 = x1 + bar | |
frame[:, x1:x2] = 1.0 | |
elif "horizontal door" in transition_type: | |
bar = math.ceil(height*progress/2) | |
if bar > 0: | |
frame[:bar, :] = 1.0 | |
frame[-bar:, :] = 1.0 | |
elif "vertical door" in transition_type: | |
bar = math.ceil(width*progress/2) | |
if bar > 0: | |
frame[:, :bar] = 1.0 | |
frame[:, -bar:] = 1.0 | |
elif "fade" in transition_type: | |
frame[:,:] = progress | |
out.append(frame) | |
if end_frame < frames: | |
out = out + [torch.full((height, width), 1.0, dtype=torch.float32, device="cpu")] * (frames - end_frame) | |
out = torch.stack(out, dim=0) | |
return (out, ) | |
MASK_CLASS_MAPPINGS = { | |
"MaskBlur+": MaskBlur, | |
"MaskBoundingBox+": MaskBoundingBox, | |
"MaskFix+": MaskFix, | |
"MaskFlip+": MaskFlip, | |
"MaskFromColor+": MaskFromColor, | |
"MaskFromList+": MaskFromList, | |
"MaskFromRGBCMYBW+": MaskFromRGBCMYBW, | |
"MaskFromSegmentation+": MaskFromSegmentation, | |
"MaskPreview+": MaskPreview, | |
"MaskSmooth+": MaskSmooth, | |
"TransitionMask+": TransitionMask, | |
# Batch | |
"MaskBatch+": MaskBatch, | |
"MaskExpandBatch+": MaskExpandBatch, | |
"MaskFromBatch+": MaskFromBatch, | |
} | |
MASK_NAME_MAPPINGS = { | |
"MaskBlur+": "🔧 Mask Blur", | |
"MaskFix+": "🔧 Mask Fix", | |
"MaskFlip+": "🔧 Mask Flip", | |
"MaskFromColor+": "🔧 Mask From Color", | |
"MaskFromList+": "🔧 Mask From List", | |
"MaskFromRGBCMYBW+": "🔧 Mask From RGB/CMY/BW", | |
"MaskFromSegmentation+": "🔧 Mask From Segmentation", | |
"MaskPreview+": "🔧 Mask Preview", | |
"MaskBoundingBox+": "🔧 Mask Bounding Box", | |
"MaskSmooth+": "🔧 Mask Smooth", | |
"TransitionMask+": "🔧 Transition Mask", | |
"MaskBatch+": "🔧 Mask Batch", | |
"MaskExpandBatch+": "🔧 Mask Expand Batch", | |
"MaskFromBatch+": "🔧 Mask From Batch", | |
} | |