File size: 4,229 Bytes
ae29df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from typing import Any, Callable, Dict
import random
import lightning.pytorch as pl
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR


class AudioSep(pl.LightningModule):
    def __init__(
        self,
        ss_model: nn.Module,
        waveform_mixer,
        query_encoder,
        loss_function,
        optimizer_type: str,
        learning_rate: float,
        lr_lambda_func,
        use_text_ratio=1.0,
    ):
        r"""Pytorch Lightning wrapper of PyTorch model, including forward,
        optimization of model, etc.

        Args:
            ss_model: nn.Module
            anchor_segment_detector: nn.Module
            loss_function: function or object
            learning_rate: float
            lr_lambda: function
        """

        super().__init__()
        self.ss_model = ss_model
        self.waveform_mixer = waveform_mixer
        self.query_encoder = query_encoder
        self.query_encoder_type = self.query_encoder.encoder_type
        self.use_text_ratio = use_text_ratio
        self.loss_function = loss_function
        self.optimizer_type = optimizer_type
        self.learning_rate = learning_rate
        self.lr_lambda_func = lr_lambda_func


    def forward(self, x):
        pass

    def training_step(self, batch_data_dict, batch_idx):
        r"""Forward a mini-batch data to model, calculate loss function, and
        train for one step. A mini-batch data is evenly distributed to multiple
        devices (if there are) for parallel training.

        Args:
            batch_data_dict: e.g. 
                'audio_text': {
                    'text': ['a sound of dog', ...]
                    'waveform': (batch_size, 1, samples)
            }
            batch_idx: int

        Returns:
            loss: float, loss function of this mini-batch
        """
        # [important] fix random seeds across devices
        random.seed(batch_idx)

        batch_audio_text_dict = batch_data_dict['audio_text']

        batch_text = batch_audio_text_dict['text']
        batch_audio = batch_audio_text_dict['waveform']
        device = batch_audio.device
        
        mixtures, segments = self.waveform_mixer(
            waveforms=batch_audio
        )

        # calculate text embed for audio-text data
        if self.query_encoder_type == 'CLAP':
            conditions = self.query_encoder.get_query_embed(
                modality='hybird',
                text=batch_text,
                audio=segments.squeeze(1),
                use_text_ratio=self.use_text_ratio,
            )

        input_dict = {
            'mixture': mixtures[:, None, :].squeeze(1),
            'condition': conditions,
        }

        target_dict = {
            'segment': segments.squeeze(1),
        }

        self.ss_model.train()
        sep_segment = self.ss_model(input_dict)['waveform']
        sep_segment = sep_segment.squeeze()
        # (batch_size, 1, segment_samples)

        output_dict = {
            'segment': sep_segment,
        }

        # Calculate loss.
        loss = self.loss_function(output_dict, target_dict)

        self.log_dict({"train_loss": loss})
        
        return loss

    def test_step(self, batch, batch_idx):
        pass
    
    def configure_optimizers(self):
        r"""Configure optimizer.
        """

        if self.optimizer_type == "AdamW":
            optimizer = optim.AdamW(
                params=self.ss_model.parameters(),
                lr=self.learning_rate,
                betas=(0.9, 0.999),
                eps=1e-08,
                weight_decay=0.0,
                amsgrad=True,
            )
        else:
            raise NotImplementedError

        scheduler = LambdaLR(optimizer, self.lr_lambda_func)

        output_dict = {
            "optimizer": optimizer,
            "lr_scheduler": {
                'scheduler': scheduler,
                'interval': 'step',
                'frequency': 1,
            }
        }

        return output_dict
    

def get_model_class(model_type):
    if model_type == 'ResUNet30':
        from models.resunet import ResUNet30
        return ResUNet30

    else:
        raise NotImplementedError